[1] Dimuccio L A, Ferreira R, Cunha L, et al. Regional forest-fire susceptibility analysis in central Portugal using a probabilistic ratings procedure and artificial neural network weights assignment[J]. International Journal of Wildland Fire, 2011, 20(6): 776-791. doi: 10.1071/WF09083
[2] Radke D, Hessler A, Ellsworth D. Firecast: Leveraging deep learning to predict wildfire spread[C], International Joint Conferences on Artificial Intelligence, Macao, China, 2019.
[3] Zhang G L, Wang M, Liu K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China[J]. International Journal of Disaster Risk Science, 2019, 10(3): 386-403. doi: 10.1007/s13753-019-00233-1
[4] 骆开苇. 全球森林火灾风险时空挖掘及预警预测方法研究[D]. 成都: 电子科技大学, 2020.
[5] Naderpour M, Rizeei H M, Ramezani F. Forest fire risk prediction: A spatial deep neural network-based framework[J]. Remote Sensing, 2021, 13(13): 2513. doi: 10.3390/rs13132513
[6] Prapas I, Kondylatos S, Papoutsis I, et al. Deep Learning Methods for Daily Wildfire Danger Forecasting[J]. arXiv e-prints, 2021. DOI: 10.48550/arXiv.2111.02736.
[7] 苏漳文. 基于地理信息系统的大兴安岭林火发生驱动因子及预测模型的研究[D]. 黑龙江: 东北林业大学. 2020.
[8] 毕杰和. 内蒙古大兴安岭林区森林生态状况及保护建议[J]. 内蒙古林业调查设计, 2018, 41(6):6-8. doi: 10.13387/j.cnki.nmld.2018.06.003
[9] 岳永杰, 韩 军, 李玉柱, 等. 内蒙古大兴安岭森林涵养水源和保育土壤功能评估[J]. 中南林业科技大学学报, 2013, 33(12):91-95. doi: 10.3969/j.issn.1673-923X.2013.12.020
[10] 张秋良, 边玉明, 代海燕, 等. 内蒙古大兴安岭林区极端气温事件变化特征[J]. 地理科学, 2017, 37(12):1909-1916. doi: 10.13249/j.cnki.sgs.2017.12.015
[11] Long S. Wang Q , Wei S,et al . Response characteristics and prospect of forest fire disasters in the context of climate change in china[J]. Journal of Catastrophology, 2014, 29(1): 12-17.
[12] Wang S. Li H. Niu S. Empirical research on climate warming risks for forest fires: a case study of grade I forest fire danger zone, Sichuan Province, China[J]. Sustainability, 2021, 13(14): 7773-7792. doi: 10.3390/su13147773
[13] 覃先林, 张子辉, 易浩若, 等. 一种预测森林可燃物含水率的方法[J]. 火灾科学, 2001, 10 (3): 159-162.
[14] Holden Z A, Jolly W M. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wild land fire management decision support[J]. Forest Ecology and Management, 2011, 262(12): 2133-2141. doi: 10.1016/j.foreco.2011.08.002
[15] Mollicone D. , Eva H., Achard F. Human role in Russian wild fires[J]. Nature, 2006, 440: 436-437. doi: 10.1038/440436a
[16] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3):32-38.
[17] Bui D T, Bui Q T, Nguyen Q P, et al. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area[J]. Agricultural and Forest Meteorology, 2017, 233: 32-44. doi: 10.1016/j.agrformet.2016.11.002
[18] Najafabadi A, Gorgani F, Najafabadi M O. Modeling forest fires in Mazandaran Province, Iran[J]. Journal of Forestry Research, 2015, 26(4): 851-858. doi: 10.1007/s11676-015-0107-z
[19] Pourtaghi Z S, Pourghasemi H R, Aretano R, et al. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques[J]. Ecological Indicators, 2016, 64: 72-84. doi: 10.1016/j.ecolind.2015.12.030
[20] 马文苑, 冯仲科, 成竺欣, 等. 山西省林火驱动因子及分布格局研究[J]. 中南林业科技大学学报, 2020, 40(9):57-69. doi: 10.14067/j.cnki.1673-923x.2020.09.007
[21] Nami M H, Jaafari A, Fallah M, et al. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS[J]. International Journal of Environmental Science and Technology, 2018, 15(2): 373-384. doi: 10.1007/s13762-017-1371-6
[22] Abdi O, Kamkar B, Shirvani Z, et al. Spatial-statistical analysis of factors determining forest fires: a case study from Golestan, Northeast Iran[J]. Geomatics Natural Hazards & Risk, 2018, 9(1): 267-280.
[23] Vilar L, Woolford D G, Martell D L, et al. A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain[J]. International Journal of Wildland Fire, 2010, 19(3): 325-337. doi: 10.1071/WF09030
[24] Guo F T, Su Z W, Wang G Y, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems[J]. Science of the Total Environment, 2017, 605: 411-425.
[25] Minnichl R A, Bahrez C J. Wildland fire and chaparral succession along the California Baja-California boundary[J]. International Journal of Wildland Fire, 1995, 5(1): 13-24. doi: 10.1071/WF9950013
[26] 何 诚, 舒立福, 刘柯珍. 大兴安岭地区夏季森林火灾环境因子特征分析[J]. 西南林业大学学报(自然科学), 2021, 41(3):87-93.
[27] 黄宝华. 山东森林火灾时空热点识别与气候因子表征关系研究[C]. 中国环境科学学会2022年科学技术年会, 南昌, 2022.
[28] 王一番. 长白山区森林火发生风险的多尺度气候驱动机制[D]. 长春: 东北师范大学, 2022.
[29] Cardile J A, Ventura S J, Turner M G. Environmental and social factors influencing wildfires in the Upper Midwest, United States[J]. Ecological Applications, 2001, 11(1): 111-127. doi: 10.1890/1051-0761(2001)011[0111:EASFIW]2.0.CO;2
[30] Li W, Xu Q, Yi J, et al. Predictive Model of Spatial Scale of Forest Fire Driving Factors: A Case Study of Yunnan Province, China[J]. Scientific Reports, 2022. 12 (1).
[31] Bisquert M, Caselles E, Sanchez J M, et al. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data[J]. International Journal of Wildland Fire, 2012, 21(8): 1025-1029. doi: 10.1071/WF11105
[32] Bergado J R, Persello C, Reinke K, et al. Predicting wildfire burns from big geodata using deep learning[J]. Safety Science, 2021, 140(105): 276-287.
[33] Muhammad K, Ahmad J, Baik S W. Early fire detection using convolutional neural networks during surveillance for effective disaster management[J]. Neurocomputing, 2018, 288: 30-42. doi: 10.1016/j.neucom.2017.04.083