[1] 刘 涛, 王家妍, 李万年, 等. 杉木 × 观光木异龄复层混交对林木生长及土壤理化性质的影响[J]. 西北林学院学报, 2022, 37(1):125-130.
[2] 张荣瑛. 森林采伐对生态环境的影响[J]. 亚热带水土保持, 2006, 18(4):15-18.
[3] FORGE T A, SIMARD S W. Trophic structure of nematode communities, microbial biomass, and nitrogen mineralization in soils of forests and clearcuts in the southern interior of British Columbia[J]. Canadian Journal of Soil Science, 2000, 80(3): 401-410. doi: 10.4141/S99-112
[4] CARMOSINI N, DEVITO K J, PREPAS E E. Gross nitrogen transformations in harvested and mature aspen-conifer mixed forest soils from the Boreal Plain[J]. Soil Biology and Biochemistry, 2002, 34(12): 1949-1951. doi: 10.1016/S0038-0717(02)00172-4
[5] 郝广明, 许忠学, 杨 帆, 等. 采伐林地土壤养分研究[J]. 北华大学学报(自然科学版), 2002, 3(5):441-444.
[6] 杜秀娟. 森林采伐对土壤养分的影响[J]. 内蒙古林业调查设计, 2013, 36(5):28-30.
[7] 董希讧, 杨学春, 杨桂香. 采伐对落叶松人工林土壤性质的影响[J]. 东北林业大学学报, 2007, 35(10):7-10.
[8] FIERER N, SCHIMEL J P. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations[J]. Soil Biology and Biochemistry, 2002, 34(6): 777-787. doi: 10.1016/S0038-0717(02)00007-X
[9] MARY B, RECOUS S, ROBIN D. A model for calculating nitrogen fluxes in soil using 15N tracing[J]. Soil Biology and Biochemistry, 1998, 30(14): 1963-1979. doi: 10.1016/S0038-0717(98)00068-6
[10] 左倩倩, 王邵军. 生物与非生物因素对森林土壤氮矿化的调控机制[J]. 浙江农林大学学报, 2021, 38(3):613-623.
[11] HASSETT J E, ZAK D R. Aspen harvest intensity decreases microbial biomass, extracellular enzyme activity, and soil nitrogen cycling[J]. Soil Science Society of America Journal, 2005, 69(1): 227-235. doi: 10.2136/sssaj2005.0227
[12] CHI Q D, WANG J, LIU Y Q,et al. Varying interactive effects of climate, soil properties, and gross nitrogen dynamics on biomass production between the topsoil and the subsoil in natural grassland ecosystems[J]. European Journal of Soil Biology, 2021, 104: 103299. doi: 10.1016/j.ejsobi.2021.103299
[13] LANG M, LI P, LONG G Q,et al. Grazing rest versus no grazing stimulates soil inorganic N turnover in the alpine grasslands of the Qinghai-Tibet plateau[J]. Catena, 2021, 204: 105382. doi: 10.1016/j.catena.2021.105382
[14] 杜 雪, 王海燕. 中国森林土壤有机碳活性组分及其影响因素[J]. 世界林业研究, 2022, 35(1):76-81.
[15] 周 莉, 代力民, 谷会岩, 等. 长白山阔叶红松林采伐迹地土壤养分含量动态研究[J]. 应用生态学报, 2004, 15(10):1771-1775.
[16] BARG A K, EDMONDS R L. Influence of partial cutting on site microclimate, soil nitrogen dynamics, and microbial biomass in Douglas-fir stands in western Washington[J]. Canadian Journal of Forest Research, 1999, 29(6): 705-713. doi: 10.1139/x99-045
[17] KIM C, SHARIK T L, JURGENSEN M F. Canopy cover effects on soil nitrogen mineralization in northern red oak (Quercus rubra) stands in northern lower Michigan[J]. Forest Ecology and Management, 1995, 76(1-3): 21-28. doi: 10.1016/0378-1127(95)03563-P
[18] LORENZ K, PRESTON C M. Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance[J]. Journal of Environmental Quality, 2002, 31(2): 431-436. doi: 10.2134/jeq2002.4310
[19] GRENON F, BRADLEY R L, JOANISSE G,et al. Mineral N availability for conifer growth following clearcutting: responsive versus non-responsive ecosystems[J]. Forest Ecology and Management, 2004, 188(1-3): 305-316. doi: 10.1016/j.foreco.2003.08.008
[20] REN X, ZHANG J, BAH H,et al. Soil gross nitrogen transformations in forestland and cropland of Regosols[J]. Scientific Reports, 2021, 11(1): 223. doi: 10.1038/s41598-020-80395-x
[21] HOYLE F C, MURPHY D V, FILLERY I R P. Temperature and stubble management influence microbial CO2-C evolution and gross N transformation rates[J]. Soil Biology and Biochemistry, 2006, 38(1): 71-80. doi: 10.1016/j.soilbio.2005.04.020
[22] CHEN Z X, ELRYS A S, ZHANG H M,et al. How does organic amendment affect soil microbial nitrate immobilization rate?[J]. Soil Biology and Biochemistry, 2022, 173: 108784. doi: 10.1016/j.soilbio.2022.108784
[23] BRADLEY R L, TITUS B D, HOGG K. Does shelterwood harvesting have less impact on forest floor nutrient availability and microbial properties than clearcutting?[J]. Biology and Fertility of Soils, 2001, 34(3): 162-169. doi: 10.1007/s003740100389
[24] MARIANO E, JONES D L, HILL P W,et al. Mineral nitrogen forms alter 14C-glucose mineralisation and nitrogen transformations in litter and soil from two sugarcane fields[J]. Applied Soil Ecology, 2016, 107: 154-161. doi: 10.1016/j.apsoil.2016.05.019
[25] RICE C W, TIEDJE J M. Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms[J]. Soil Biology and Biochemistry, 1989, 21(4): 597-602. doi: 10.1016/0038-0717(89)90135-1
[26] ELYRS A S, WANG J, METWALLY M A S,et al. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen[J]. Global Change Biology, 2021, 27(24): 6512-6524. doi: 10.1111/gcb.15883
[27] ZHANG Y S, PAN B B, LAM S K,et al. Predicting the ratio of nitrification to immobilization to reflect the potential risk of nitrogen loss worldwide[J]. Environmental Science and Technology, 2021, 55(11): 7721-7730. doi: 10.1021/acs.est.0c08514