[1] 国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社. 2019, 28-29.
[2] 刘 丽, 段争虎, 汪思龙, 等. 不同发育阶段杉木人工林对土壤微生物群落结构的影响[J]. 生态学杂志, 2009, 28(12):2417-2423. doi: 10.13292/j.1000-4890.2009.0421
[3] LUAN J, XIANG C, LIU S,et al. Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan, China[J]. Geoderma, 2010, 156(3): 228-236.
[4] 韦宜慧, 陈嘉琪, 董玉红, 等. 杉木人工林土壤溶磷细菌筛选及培养条件优化[J]. 林业科学研究, 2020, 33(4):83-91. doi: 10.13275/j.cnki.lykxyj.2020.04.011
[5] 王永壮, 陈 欣, 史 奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1):260-268. doi: 10.13287/j.1001-9332.2013.0147
[6] 关诗洋, 王佳琪, 于 贺, 等. 减水减肥对设施黑土菜田土壤无机磷形态及分布的影响[J]. 中国农学通报, 2021, 37(23):89-93. doi: 10.11924/j.issn.1000-6850.casb2021-0106
[7] 张 虹, 于姣妲, 李海洋, 等. 不同栽植代数杉木人工林土壤磷素特征研究[J]. 林业科学研究, 2021, 34(1):10-18. doi: 10.13275/j.cnki.lykxyj.2021.01.002
[8] LI Q, BI S, JI G. Determination of strongly reducing substances in sediment[J]. Environmental Science & Technology, 2003, 37(24): 5727-5731.
[9] SMOLDERS E, BAETENS E, VERBEECK M,et al. Internal loading and redox cycling of sediment iron explain reactive phosphorus concentrations in lowland rivers[J]. Environmental Science & Technology, 2017, 51(5): 2584-2592.
[10] 周垂帆, 林静雯, 李 莹, 等. 磷与草甘膦在酸性土壤中吸附解吸交互作用机制[J]. 农业环境科学学报, 2016, 35(12):2367-2376. doi: 10.11654/jaes.2016-0862
[11] FERNANDES A P, NUNES T C, PAQUETE C M,et al. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Geobacter sulfurreducens[J]. Biochemical Journal, 2017, 474(5): 797-808. doi: 10.1042/BCJ20161022
[12] WU P, WANG G, FAROOQ T H,et al. Low phosphorus and competition affect Chinese fir cutting growth and root organic acid content: does neighboring root activity aggravate P nutrient deficiency?[J]. Journal of Soils and Sediments, 2017, 17(12): 2775-2785. doi: 10.1007/s11368-017-1852-8
[13] YU J, TANG L, PANG Y,et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism[J]. Chemical Engineering Journal, 2019, 364: 146-159. doi: 10.1016/j.cej.2019.01.163
[14] BANINAJARIAN S, SHIRVANI M. Use of biochar as a possible means of minimizing phosphate fixation and external P requirement of acidic soil[J]. Journal of Plant Nutrition, 2021, 44(1): 59-73. doi: 10.1080/01904167.2020.1792491
[15] ZHOU C, HEAL K, TIGABU M,et al. Biochar addition to forest plantation soil enhances phosphorus availability and soil bacterial community diversity[J]. Forest Ecology and Management, 2020, 455: 117635. doi: 10.1016/j.foreco.2019.117635
[16] 令狐荣云, 余炜敏, 王荣萍, 等. 铁还原菌Shewanella oneidensis MR-1对铁磷复合物中铁、磷释放规律的影响[J]. 生态环境学报, 2017, 26(10):1704-1709.
[17] JIAN-FEN G, YU-SHENG Y, GUANG-SHUI C,et al. Dissolved organic carbon and nitrogen in precipitation, throughfall and stemflow from Schima superba and Cunninghamia lanceolata plantations in subtropical China[J]. Journal of Forestry Research, 2005, 16(1): 19-22. doi: 10.1007/BF02856847
[18] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978.
[19] ZHANG Y, LI Y, WANG S,et al. Soil phosphorus fractionation and its association with soil phosphate-solubilizing bacteria in a chronosequence of vegetation restoration[J]. Ecological Engineering, 2021, 164: 106208. doi: 10.1016/j.ecoleng.2021.106208
[20] HALE S E, ALLING V, MARTINSEN V,et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars[J]. Chemosphere, 2013, 91(11): 1612-1619. doi: 10.1016/j.chemosphere.2012.12.057
[21] 谷丽丽. 长期定位施肥及水田连作对农田土壤中磷赋存形态的影响[D]. 武汉: 华中农业大学, 2017.
[22] PETTICREW E, AROCENA J. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings[J]. The Science of The Total Environment, 2001, 266(1-3): 87-93. doi: 10.1016/S0048-9697(00)00756-7
[23] 郭智俐, 李 苓, 刘晓月, 等. 两种铁氧化物对无机磷的吸附特征分析[J]. 中国海洋大学学报(自然科学版), 2021, 51(8):42-48. doi: 10.16441/j.cnki.hdxb.20200271
[24] OLANDER L P, VITOUSEK P M. Biological and geochemical sinks for phosphorus in soil from a wet tropical forest[J]. Ecosystems, 2004, 7(4): 404-419.
[25] ESBERG C, DU TOIT B, OLSSON R,et al. Microbial responses to P addition in six South African forest soils[J]. Plant and Soil, 2010, 329(1-2): 209-225. doi: 10.1007/s11104-009-0146-3
[26] 杜艳玲, 周怀平, 杨振兴, 等. 长期不同秸秆还田方式对褐土磷素组分的影响[J]. 山西农业科学, 2019, 47(11):1947-1954 + 1959. doi: 10.3969/j.issn.1002-2481.2019.11.20
[27] 王 岩, 张志勇, 秦红杰, 等. 种养凤眼莲条件下pH值对底泥中不同形态磷释放的影响[J]. 南京农业大学学报, 2017, 40(4):681-689. doi: 10.7685/jnau.201611021
[28] 索慧慧, 林 颖, 赵苗苗, 等. 生物炭对淹水土壤中溶解性有机质含量及组成特征的影响[J]. 水土保持学报, 2019, 33(2):155-161,271. doi: 10.13870/j.cnki.stbcxb.2019.02.025
[29] BLÖTHE M, AKOB D M, KOSTKA J E,et al. pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments[J]. Applied and Environmental Microbiology, 2008, 74(4): 1019-1029. doi: 10.1128/AEM.01194-07
[30] KLÜPFEL L, KEILUWEIT M, KLEBER M,et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10): 5601-5611.
[31] SHI L, DONG H, REGUERA G,et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662. doi: 10.1038/nrmicro.2016.93
[32] XU S, ADHIKARI D, HUANG R,et al. Biochar-facilitated microbial reduction of hematite[J]. Environ Sci Technol, 2016, 50: 2389-2395. doi: 10.1021/acs.est.5b05517
[33] AYYASAMY P M, CHUN S, LEE S. Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters[J]. Journal of Hazardous Materials, 2009, 161(2): 1095-1102.
[34] 文帅龙, 刘静静, 戴家如, 等. 铁(氢)氧化物介导的溶解性有机质、无机磷的固定及相互作用研究进展[J]. 湖泊科学, 2022, 34(5):1428-1440. doi: 10.18307/2022.0502
[35] 张又弛, 李会丹. 生物炭对土壤中铁生物还原作用和重金属分布的影响[J]. 环境污染与防治, 2019, 41(4):377-381. doi: 10.15985/j.cnki.1001-3865.2019.04.001
[36] 包明琢, 曲雪铭, 高倩倩, 等. 磷肥和生物炭配施对杉木林地土壤微生物的影响[J]. 西北林学院学报, 2022, 37(2):10-19. doi: 10.3969/j.issn.1001-7461.2022.02.02
[37] 曲 植, 李丽娜, 贾 蓉. 水稻土中水溶性有机碳对铁还原过程的贡献[J]. 植物营养与肥料学报, 2018, 24(2):346-356.
[38] CUI X, FANG S, YAO Y,et al. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar[J]. Science of The Total Environment, 2016, 562: 517-525. doi: 10.1016/j.scitotenv.2016.03.248
[39] DING X, ZHANG S, WANG R,et al. Exogenous labile C application enhances Fe-P utilization for mycorrhizal plants through iron-reducing bacteria in subtropical soil[J]. Journal of soil science and plant nutrition, 2014, 14(4): 803-817.
[40] 夏丽丹, 曹 升, 张 虹, 等. 不同水分条件下生物炭对红壤磷素形态及磷酸酶活性的影响[J]. 农业环境科学学报, 2019, 38(5):1101-1111. doi: 10.11654/jaes.2018-1171
[41] GROSSMAN J M, O’NEILL B E, TSAI S M,et al. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy[J]. Microbial Ecology, 2010, 60(1): 192-205. doi: 10.1007/s00248-010-9689-3
[42] SIMARANI K, AZLAN HALMI M F, ABDULLAH R. Short-term effects of biochar amendment on soil microbial community in humid tropics[J]. Archives of Agronomy and Soil Science, Taylor & Francis, 2018, 64(13): 1847-1860.
[43] 张燕林, 黄彩凤, 包明琢, 等. 生物炭及其老化对杉木林土壤养分含量和微生物群落组成影响的室内模拟[J]. 林业科学, 2021, 57(6):169-179. doi: 10.11707/j.1001-7488.20210619
[44] 陈倩倩, 刘 波, 王阶平, 等. 基于宏基因组方法分析养猪发酵床微生物组季节性变化[J]. 农业环境科学学报, 2018, 37(6):1240-1247. doi: 10.11654/jaes.2017-1330
[45] ZENG J, LIU X, SONG L,et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition[J]. Soil Biology and Biochemistry, 2016, 92: 41-49. doi: 10.1016/j.soilbio.2015.09.018
[46] LIU S, MENG J, JIANG L,et al. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types[J]. Applied Soil Ecology, 2017, 116: 12-22. doi: 10.1016/j.apsoil.2017.03.020
[47] 朱启林, 曹 明, 张雪彬, 等. 不同热解温度下禾本科植物生物炭理化特性分析[J]. 生物质化学工程, 2021, 55(4):21-28. doi: 10.3969/j.issn.1673-5854.2021.04.004
[48] 禹桃兵, 石琪晗, 年 海, 等. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9):1690-1702.
[49] 王兵爽, 李淑君, 张舒桓, 等. 西瓜根系分泌酸性磷酸酶对有机肥营养的响应[J]. 土壤学报, 2019, 56(2):454-465. doi: 10.11766/trxb201807090318
[50] 刘梦葭, 杨 粟, 程凯莹, 等. 奇球菌属的最新研究进展及其应用[J]. 核农学报, 2017, 31(9):1723-1729. doi: 10.11869/j.issn.100-8551.2017.09.1723