[1] Hann D W. Wang C H. Mortality equation for individual trees in the mixed conifer zone of southwest oregon[M]. Forest Research Laboratory, Oregon State University, Corvallis, Research Bulletin, 1990. 67, 17 .
[2] Adame P, del Rio M, Canellas I. Modeling individual-tree mortality in Pyrenean oak (Quercus pyrenaica Willd.) stands[J]. Ann For Sci, 2010, 67(8): 810-810. doi: 10.1051/forest/2010046
[3] Vanoni M, Bugmann H, Nötzli M, et al. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species[J]. For Ecol Manage, 2016, 382(15): 51-63.
[4] Thapa R, Burkhart H E. Modeling stand-level mortality of Loblolly pine (Pinus taeda L.) using stand, climate, and soil variables[J]. For Sci, 2014, 61(5): 834-846.
[5] Moser J W. Dynamics of an uneven-aged forest stand[J]. For Sci, 1972, 18(3): 184-191.
[6] Hamilton Jr D A. Event Probability Estimated by Regression[M]. USDA Forest Service Res Pap. 1974, INT-152.
[7] Monserud A R. Simulation of forest tree mortality[J]. For Sci, 1976, 22(4): 438-444.
[8] Zhao D, Borders B, Wang M, et al. Modeling mortality of second-rotation loblolly pine plantations in the Piedmont/ Upper Coastal Plain and Lower Coastal Plain of the southern United States[J]. For Ecol Manage, 2007, 252(1-3): 132-143. doi: 10.1016/j.foreco.2007.06.030
[9] Yang Y, Huang S. A generalized mixed logistic model for predicting individual tree survival probability with unequal measurement intervals[J]. For Sci, 2013, 59(2): 177-187.
[10] Boeck A, Dieler J, Biber P, et al. Predicting tree mortality for European beech in southern Germany using spatially explicit competition indices[J]. For Sci, 2014, 60(4): 613-622.
[11] Woodall C W, Grambsch P L, Thomas W. Applying survival analysis to a large-scale forest inventory for assessment of tree mortality in Minnesota[J]. Ecol Model, 2005, 189(3): 199-208.
[12] Eerikainen K, Miina J, Valkonen S. Models for the regeneration establishment and the development of established seedlings in uneven-aged, Norway spruce dominated forest stands of southern Finland[J]. For Ecol Manage, 2007, 242(2-3): 444-461. doi: 10.1016/j.foreco.2007.01.078
[13] Allison P D. Survival Analysis Using SAS: A Practical Guide[M].Second ed. SAS Institute Inc.Gary, NC, 2010,
[14] Waters W E. Life-table approach to analysis of insect impact[J]. J For, 1969, 67(5): 300-304.
[15] Fan Z F, Kabrick J M, Shifley S R. Classification and regression tree based survival analysis in oak-dominated forests of Missouris Ozark highlands[J]. Can J For Res, 2006, 36(7): 1740-1748. doi: 10.1139/x06-068
[16] Von Gadow K, Kotze H, Seifert T, et al. Potential density and tree survival: an analysis based on South African spacing studies[J]. Southern Forests, 2014, 77(2): 1-8.
[17] Uzoh F C C, Mori S R. Applying survival analysis to managed even-aged stands of ponderosa pine for assessment of tree mortality in the western United States[J]. For Ecol Manage, 2012, 285(12): 101-122.
[18] Yang Y, Titus S J, Huang S. Modeling individual tree mortality for white spruce in Alberta[J]. Ecol Model, 2003, 163(3): 209-222. doi: 10.1016/S0304-3800(03)00008-5
[19] Allison P D. Survival Analysis Using the SAS System, APractical Guide[M]. SAS Institute, Cary, NC, 1995.
[20] Lawless J F. Statistical Models and Methods for Lifetime Data[M]. New York: John Wiley and Sons, 2003.
[21] Cox D R. Regression models and life tables[J]. J Roy Stat Soc, Ser. B, 1972, 20: 187-220.
[22] Wunder J, Brzeziecki B, Zybura H, et al. Growth-mortality relationships as indicators of life-history strategies: a comparison of nine tree species in unmanaged European forests[J]. Oikos, 2008, 117(6): 815-828. doi: 10.1111/j.0030-1299.2008.16371.x
[23] Hurst J M, Stewart G H, Perry G L, et al. Determinants of tree mortality in mixed old-growth Nothofagus forest[J]. For Ecol Manage, 2012, 270(2): 189-199.
[24] Timilsina N, Staudhammer C L. Individual tree mortality model for Slash pine in Florida: A mixed modeling approach[J]. South J Appl For, 2012, 36(4): 211-219. doi: 10.5849/sjaf.11-026
[25] Wu H, Franklin S B, Liu J M, et al. Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest[J]. For Ecol Manage, 2017, 384(2): 169-179.
[26] Moore J A, Hamilton Jr D A, Xiao Y, et al. Bedrock type significantly affects individual tree mortality for various conifers in the inland Northwest, USA[J]. Can J For Res, 2004, 34(1): 31-42. doi: 10.1139/x03-196
[27] 姜晶梅. 医学实用多元统计学[M]. 北京: 科学出版社, 2014.
[28] Rawlings J O, Pantula S G, Dickey D A. Applied Regression Analysis: A Research Tool[M]. 2nd edn. Springer, New York. 1998.
[29] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction[M]. Springer, New York. 2001.
[30] Burnham K P, Anderson D R. Model Selection and Multi-model Inference: A Practical Information-theoretic Approach [M]. 2nd edn, Springer, 2002, New York.
[31] 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66-73. doi: 10.11707/j.1001-7488.20120311
[32] Yaussy D A, Iverson L R, Matthews S N. Competition and climate affects US hardwood-forest tree mortality[J]. For Sci, 2012, 59(4): 416-430.
[33] Csilléry K, Seignobosc M, Lafond V. Estimating long-term tree mortality rate time series by combining data from periodic inventories and harvest reports in a Bayesian state-space model[J]. For Ecol Manage, 2013, 292(2): 64-74.
[34] Nesmith Jonathan C B, Das A J, O'Hara K L, et al. The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park[J]. Can J For Res, 2015, 45(7): 910-919. doi: 10.1139/cjfr-2014-0449