[1] Dai A G. Hydroclimatic trends during 1950–2018 over global land[J]. Climate Dynamics, 2021, 56(9): 4027-4049.
[2] Zhou G Y, Wei X H, Wu Y P, et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China[J]. Global Change Biology, 2011, 17(12): 3736-3746. doi: 10.1111/j.1365-2486.2011.02499.x
[3] Zhou G Y, Peng C H, Li Y L, et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China[J]. Global Change Biology, 2013, 19(4): 1197-1210. doi: 10.1111/gcb.12128
[4] Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest ecology and management, 2010, 259(4): 660-684. doi: 10.1016/j.foreco.2009.09.001
[5] Poorter L, Bongers F. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7): 1733-1743. doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
[6] De Carcer P S, Signarbieux C, Schlaepfer R, et al. Responses of antinomic foliar traits to experimental climate forcing in beech and spruce saplings[J]. Environmental and Experimental Botany, 2017, 140: 128-140. doi: 10.1016/j.envexpbot.2017.05.013
[7] 李 周, 赵雅洁, 宋海燕, 等. 不同水分处理下喀斯特土层厚度异质性对两种草本叶片解剖结构和光合特性的影响[J]. 生态学报, 2018, 38(2):721-732.
[8] Toscano S, Ferrante A, Tribulato A, et al. Leaf physiological and anatomical responses of Lantana and Ligustrum species under different water availability[J]. Plant Physiology and Biochemistry, 2018, 127: 380-392. doi: 10.1016/j.plaphy.2018.04.008
[9] 朱教君, 康宏樟, 李智辉, 等. 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响[J]. 生态学报, 2005, 25(10):2527-2533. doi: 10.3321/j.issn:1000-0933.2005.10.010
[10] Bacelar E A, Santos D L, Moutinho-Pereira J M, et al. Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage[J]. Plant Science, 2006, 170(3): 596-605. doi: 10.1016/j.plantsci.2005.10.014
[11] Toscano S, Ferrante A, Romano D. Response of Mediterranean ornamental plants to drought stress[J]. Horticulturae, 2019, 5(1): 6. doi: 10.3390/horticulturae5010006
[12] Gratani L, Catoni R, Varone L. Morphological, anatomical and physiological leaf traits of Q. ilex, P. latifolia, P. lentiscus, and M. communis and their response to Mediterranean climate stress factors[J]. Botanical Studies, 2013, 54(1): 1-12. doi: 10.1186/1999-3110-54-1
[13] Binks O, Meir P, Rowland L, et al. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees[J]. Tree Physiology, 2016, 36(12): 1550-1561. doi: 10.1093/treephys/tpw078
[14] Rowland L, Lobo‐do‐Vale R L, Christoffersen B O, et al. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration[J]. Global Change Biology, 2015, 21(12): 4662-4672. doi: 10.1111/gcb.13035
[15] 杨予静, 刘世荣, 陈 琳, 等. 马尾松人工林土壤和团聚体有机碳矿化对穿透雨减少的响应[J]. 应用生态学报, 2018, 29(6):1779-1786.
[16] 王仁杰, 蒋 燚, 王 勇, 等. 南亚热带不同红锥混交林土壤碳库稳定性与碳库管理指数变化[J]. 林业科学研究, 2021, 34(2):24-31.
[17] Carnicer J, Barbeta A, Sperlich D, et al. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale[J]. Frontiers in Plant Science, 2013, 4: 409.
[18] Zhao X, Zhao P, Zhu L, et al. Exploring the influence of biological traits and environmental drivers on water use variations across contrasting forests[J]. Forests, 2021, 12(2): 161. doi: 10.3390/f12020161
[19] 陈 琳, 刘世荣, 温远光, 等. 南亚热带红锥和马尾松人工林生长对穿透雨减少的响应[J]. 应用生态学报, 2018, 29(7):2330-2338.
[20] 唐 艳, 王传宽. 东北主要树种光合作用可行的离体测定方法[J]. 植物生态学报, 2011, 35(4):452-462.
[21] 陈志成, 陆海波, 刘世荣, 等. 锐齿栎水力结构和生长对降雨减少的响应[J]. 生态学报, 2018, 38(7):2405-2413.
[22] Bosabalidis A M, Kofidis G. Comparative effects of drought stress on leaf anatomy of two olive cultivars[J]. Plant science, 2002, 163(2): 375-379. doi: 10.1016/S0168-9452(02)00135-8
[23] 胡潇予, 于海燕, 崔艺凡, 等. 不同种源文冠果叶片气孔分布特征对水分胁迫的响应[J]. 林业科学研究, 2019, 32(1):169-174.
[24] 黄 绢, 陈 存, 张伟溪, 等. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5):8-15. doi: 10.11707/j.1001-7488.20170502
[25] 吴丽君, 李志辉, 杨模华, 等. 赤皮青冈幼苗叶片解剖结构对干旱胁迫的响应[J]. 应用生态学报, 2015, 26(12):3619-3626.
[26] Velikova V, Arena C, Izzo L G, et al. Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two Platanus orientalis populations from contrasting habitats[J]. International journal of molecular sciences, 2020, 21(11): 3912. doi: 10.3390/ijms21113912
[27] 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005, 22(S1):118-127.
[28] Guerfel M, Baccouri O, Boujnah D, et al. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L. ) cultivars[J]. Scientia Horticulturae, 2009, 119(3): 257-263. doi: 10.1016/j.scienta.2008.08.006
[29] Wu H, Fan Y, Yu F, et al. Leaf anatomical plasticity of Phyllostachys glauca McClure in limestone mountains was associated with both soil water and soil nutrients[J]. Forests, 2022, 13(4): 493. doi: 10.3390/f13040493
[30] Pinheiro C, Chaves M M. Photosynthesis and drought: can we make metabolic connections from available data?[J]. Journal of experimental botany, 2011, 62(3): 869-882. doi: 10.1093/jxb/erq340
[31] Sadras V O, Milroy S P. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review[J]. Field Crops Research, 1996, 47(2-3): 253-266. doi: 10.1016/0378-4290(96)00014-7
[32] Liu F, Stutzel H. Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp. ) in response to soil drying[J]. Journal of the American Society for Horticultural Science, 2002, 127(5): 878-883. doi: 10.21273/JASHS.127.5.878
[33] Zhang P, Zhou X, Fu Y, et al. Differential effects of drought on nonstructural carbohydrate storage in seedlings and mature trees of four species in a subtropical forest[J]. Forest Ecology and Management, 2020, 469: 118159. doi: 10.1016/j.foreco.2020.118159
[34] Yan W, Zhong Y, Shang G. A meta-analysis of leaf gas exchange and water status responses to drought[J]. Scientific Reports, 2016, 6(1): 1-9. doi: 10.1038/s41598-016-0001-8
[35] Zhang J, Jiang H, Song X, et al. The responses of plant leaf CO2/H2O exchange and water use efficiency to drought: A meta-analysis[J]. Sustainability, 2018, 10(2): 551. doi: 10.3390/su10020551
[36] Passioura J B. Water in the soil-plant-atmosphere continuum[M]//Physiological Plant Ecology II. Berlin: Springer, Heidelberg, 1982: 5-33.
[37] 曹生奎, 冯 起, 司建华, 等. 植物叶片水分利用效率研究综述[J]. 生态学报, 2009, 29(7):3882-3892. doi: 10.3321/j.issn:1000-0933.2009.07.051
[38] 季子敬, 全先奎, 王传宽. 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性[J]. 生态学报, 2013, 33(21):6967-6974.
[39] Woodruff D R, Meinzer F C. Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer[J]. Plant, Cell & Environment, 2011, 34(11): 1920-1930.
[40] Hernandez‐Santana V, Perez‐Arcoiza A, Gomez‐Jimenez M C, et al. Disentangling the link between leaf photosynthesis and turgor in fruit growth[J]. The Plant Journal, 2021, 107(6): 1788-1801. doi: 10.1111/tpj.15418
[41] Sinclair T R, Holbrook N M, Zwieniecki M A. Daily transpiration rates of woody species on drying soil[J]. Tree Physiology, 2005, 25(11): 1469-1472. doi: 10.1093/treephys/25.11.1469
[42] Xiong D, Flexas J. Leaf anatomical characteristics are less important than leaf biochemical properties in determining photosynthesis responses to nitrogen top-dressing[J]. Journal of Experimental Botany, 2021, 72(15): 5709-5720. doi: 10.1093/jxb/erab230
[43] 庞 杰, 张凤兰, 郝丽珍, 等. 沙芥幼苗叶片解剖结构和光合作用对干旱胁迫的响应[J]. 生态环境学报, 2013, 22(4):575-581. doi: 10.3969/j.issn.1674-5906.2013.04.005
[44] 唐星林, 曹永慧, 顾连宏, 等. 基于FvCB模型的叶片光合生理对环境因子的响应研究进展[J]. 生态学报, 2017, 37(19):6633-6645.