[1] Liang D, Zhang Z J, Wu H L, et al. Single-base-resolution methylomes of populous trichocarpa reveal the association between DNA methylation and drought stress[J]. BMC Genetics, 2014, 15(Suppl 1):S9. doi: 10.1186/1471-2156-15-S1-S9
[2] Stéphane H, David L J, Y Lin, et al. A Comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (Poplar Leaf Rust)[J]. Molecular Plant-microbe Interactions, 2012, 25(3):190-293.
[3] Duplessis S, Major I, Martin F, et al. Poplar and pathogen interactions:Insights from Populus genome-wide analyses of resistance and defense gene families and gene expression profiling[J]. Crit Rev Plant Sci, 2009, 28:309-334. doi: 10.1080/07352680903241063
[4] Pei M.H, Bayon C, Ruiz C. Phylogenetic relationships in some Melampsora rusts on Salicaceae assessed using rDNA sequence information[J]. Mycol Res, 2005, 109:401-409. doi: 10.1017/S0953756205002479
[5] Lister R, O'Malley R C, Tonti-Filippini J, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis[J]. Cell, 2008, 133(3):523-536. doi: 10.1016/j.cell.2008.03.029
[6] Wang X, Elling A A, Li X, et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize[J]. The Plant Cell Online, 2009, 21(4):1053-1069. doi: 10.1105/tpc.109.065714
[7] Colaneri A C, Jones A M. Genome-wide quantitative identification of DNA differentially methylated sites in arabidopsis seedlings growing at different water potential[J]. PloS One, 2013, 8(4):e59878. doi: 10.1371/journal.pone.0059878
[8] Wang W S, Pan Y J, Zhao X Q, et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2011, 62:1951-1960. doi: 10.1093/jxb/erq391
[9] Dowen R H, Pelizzola M, Schmitz R J, et al. Widespread dynamic DNA methylation in response to biotic stress[J]. Proc Natl Acad Sci USA, 2012, 109:E2183-E2191. doi: 10.1073/pnas.1209329109
[10] Labra M, Ghiani A, Citterio S, et al. Analysis of cytosine methylation pattern in response to water deficit in pea root tips[J]. Plant Biology, 2002, 4(6):694-699. doi: 10.1055/s-2002-37398
[11] Yu Y, Yang X, Wang H, et al. Cytosine methylation alteration in natural populations of Leymuschinensis induced by multiple abiotic stresses[J]. PloS One, 2013, 8(2):e55772. doi: 10.1371/journal.pone.0055772
[12] Cao S F, Zheng Y H, Yang Z F, et al. Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms[J]. Postharvest Biol Technol, 2008, 49:301-307. doi: 10.1016/j.postharvbio.2007.12.007
[13] Uthup T K, Ravindran M, Bini K, et al. Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis[J]. Molecular Plant, 2011, 4(6):996-1013. doi: 10.1093/mp/ssr039
[14] Xu J D, Zhou S S, Gong X Q, et al. Single-basemethylome analysis reveals dynamic epigenomic differences associated with water deficit in apple[J]. Plant Biotechnology, 2018, 16:672-687. doi: 10.1111/pbi.12820
[15] Cao X B, Fan G Q, Zhai X Q. Morphological changes of the witches' broom seedlings of Paulownia tomentosa treated with methyl methane sulphonate and SSR analysis[J]. Acta Phytopathol, 2012, 42:214-218.
[16] 曹支敏, 余仲东, 潘彦平, 等.中国落叶松-杨栅锈菌(Melampsora laricipopulina Kleb.)生理小种分化[J].植物病理学报, 2005(2):184-186. doi: 10.3321/j.issn:0412-0914.2005.02.015
[17] 陈祖静.杨树对叶锈病的生物化学抗性机制研究[D].杨凌, 西北农林科技大学. 2010.
[18] 贺伟, 叶建仁.森林病理学[M].北京:中国林业出版社, 2017:66-70
[19] 刘莉丽.杨树对落叶松-杨栅锈菌的抗性研究[D].杨凌, 西北农林科技大学. 2009.
[20] UmakantaSarker, Shinya Oba. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content[J]. Food Chemistry, 2018, 252:72-83. doi: 10.1016/j.foodchem.2018.01.097
[21] Alici E H, Arabaci G. Determination of SOD, POD, PPO and CAT Enzyme. Activities in Rumexobtusifolius L[J]. Science Domain inter, 2016, 11(3):1-7.
[22] Duan X F, Yang Q L, Tao N G. Effect of applying cinnamaldehyde incorporated in wax on green mould decay in citrus fruits[J]. Sci Food Agric, 2018, 98:527-533. doi: 10.1002/jsfa.8490
[23] Baohua Feng, Caixia Zhang, Tingting Chen, et al. Salicylic acid reverses pollen abortion of rice caused by heat stress[J]. BMC Plant Biology, 2018, 18:245. doi: 10.1186/s12870-018-1472-5
[24] UmakantaSarker, Shinya Oba. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable[J]. BMC Plant Biology, 2018, 18:258. doi: 10.1186/s12870-018-1484-1
[25] Liu H, Jiang W, Bi Y, et al. Postharvest BTH treatment induces resistance of peach (Prunuspersica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms[J]. Postharvest Biology and Tech, 2005, 35:263-269. doi: 10.1016/j.postharvbio.2004.08.006
[26] 杨海燕, 杜宪, 潘淑慧, 等.不同抗锈病杨树品种防御酶活性变化的研究[J].现代农业科技, 2012, 12:139-141.
[27] 李庆.镉胁迫下铈对玉米生理特性影响研究[D].雅安, 四川农业大学, 2013.
[28] 刘慧英, 朱祝军, 吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响[J].应用生态学, 2004, 15(4):659-662. doi: 10.3321/j.issn:1001-9332.2004.04.024
[29] 王晨芳, 黄丽丽, 张宏昌, 等.小麦一条锈菌互作过程中活性氧及保护酶系的变化研究[J].植物病理学报, 2009, 39(1):52-60. doi: 10.3321/j.issn:0412-0914.2009.01.008
[30] 徐晓晖, 孙骏威, 郭泽建.植物与病原菌互作中活性氧的检测方法[J].中国计量学院学报, 2007, 18(1):49-53 doi: 10.3969/j.issn.1004-1540.2007.01.011
[31] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Phytopathology, 2005, 43:205-227. doi: 10.1146/annurev.phyto.43.040204.135923
[32] Schouten A, Tenberge K B, Vermeer J, et al. Functional analysis of an extracelluar catalase of Botrytis cinerea[J]. Molecular Plant Pathology, 2002, 3(4):227-238. doi: 10.1046/j.1364-3703.2002.00114.x
[33] Rolk Y, Liu S J, Quidde T, et al. Functional analysis of H2O2 generating systems in Botrytis cinerea:the major Cu-Zn-superoxide dismutase(BCSOD1)congtributes to virulence on French bean, whereas a glucose oxidase(BCGOD1)is dispensable[J]. Molecular Plant Pathology, 2004, 5(1):17-27. doi: 10.1111/j.1364-3703.2004.00201.x
[34] Tenhaken R, Levine A, Brisson L F, et al. Function of the oxidative burst in hypersensitive disease resistance[J]. Proc Natl Acad Sci USA, 1995, 92(10):4158-4163. doi: 10.1073/pnas.92.10.4158
[35] Lamb C, Dixon R A. The oxidative burst in plant disease resistance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48:251-275. doi: 10.1146/annurev.arplant.48.1.251
[36] Delledonne M, Murgia I, Ederle D, et al. Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response[J]. Plant Physiol Biochem, 2002, 40:605-610. doi: 10.1016/S0981-9428(02)01397-9
[37] Gozzo F. Systemic acquired resistance in crop protection:from nature to a chemical approach[J]. Journal Agricultural Food Chemical, 2003, 51(16):4487-4503. doi: 10.1021/jf030025s
[38] 秦琼, 魏淑芳, 杜克云.不同程度的叶锈病对杨树生理代谢的影响[J].四川林业科技, 2016, 37(6):86-90.
[39] Fix D, Canugovi C, Bhagwat A S. Transcription increases methylmethane sulfonate-induced mutations in alkB strains of Escherichia coli[J]. DNA Repair, 2008, 7:1289-1297. doi: 10.1016/j.dnarep.2008.04.008
[40] Chang M, Bellaoui M, Boone C, et al. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage[J]. P Natl Acad Sci USA. 2002, 99:16934-16939. doi: 10.1073/pnas.262669299
[41] Stoycheva T. Methylmethane sulfonate increases the level of superoxide anions in yeast cells[J]. Biotechnol Biotec Eq, 2009, 23:688-692. doi: 10.1080/13102818.2009.10818518
[42] Lee M R, Kim S H, Cho H J, et al. Transcription factors NF-YA regulate the induction of human OGG1 following DNA-alkylating agent methylmethane sulfonate (MMS) treatment[J]. J Biol Chem, 2004, 279:9857-9866. doi: 10.1074/jbc.M311132200