[1] LV Z Y, LIU F, ZHANG Y B, et al. Ecologically adaptable Populus simonii is specific for recalcitrance‐reduced lignocellulose and largely-enhanced enzymatic saccharification among woody plants[J]. Global Change Biology Bioenergy, 2020, 13(1): 348-360.
[2] CHEN C, CHU Y G, HUANG Q J, et al. Morphological, physiological, and transcriptional responses to low nitrogen stress in Populus deltoides Marsh. clones with contrasting nitrogen use efficiency[J]. BMC Genomics, 2021, 22(1): 697. doi: 10.1186/s12864-021-07991-7
[3] SONG H F, CAI Z Y, LIAO J, et al. Phosphoproteomic and metabolomic analyses reveal sexually differential regulatory mechanisms in poplar to nitrogen deficiency[J]. Journal of Proteome Research, 2020, 19(3): 1073-1084. doi: 10.1021/acs.jproteome.9b00600
[4] CHEN W, MENG C, JI J, et al. Exogenous GABA promotes adaptation and growth by altering the carbon and nitrogen metabolic flux in poplar seedlings under low nitrogen conditions[J]. Tree Physiology, 2020, 40(12): 1744-1761. doi: 10.1093/treephys/tpaa101
[5] HEFFNER E, JANNINK J L, SORRELLS M. Genomic selection accuracy using multifamily prediction models in a wheat breeding program[J]. Plant Genome, 2011, 4(1): 65-75. doi: 10.3835/plantgenome.2010.12.0029
[6] TEMPELMAN R J. Statistical and computational challenges in whole genome prediction and genome-wide association analyses for plant and animal breeding[J]. Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20(4): 442-466. doi: 10.1007/s13253-015-0225-2
[7] YU X Q, LI X R, GUO T T, et al. Genomic prediction contributing to a promising global strategy to turbocharge gene banks[J]. Nature Plants, 2016, 2(10): 16150. doi: 10.1038/nplants.2016.150
[8] CROSSA J, PÉREZ-RODRÍGUEZ P, CUEVAS J, et al. Genomic selection in plant breeding: methods, models, and perspectives[J]. Trends Plant Science, 2017, 22(11): 961-975. doi: 10.1016/j.tplants.2017.08.011
[9] CAMPOS G, GIANOLA D, ALLISON D B. Predicting genetic predisposition in humans: the promise of whole-genome markers[J]. Nature Reviews Genetics, 2010, 11(12): 880-886. doi: 10.1038/nrg2898
[10] ASORO F, NEWELL M, BEAVIS W, et al. Accuracy and training population design for genomic selection on quantitative traits in elite north American oats[J]. Plant Genome, 2011, 4(2): 132-144.
[11] 焦宇馨, 张宇翔, 杨文艳, 等. 结合辅助性状的玉米全基因组选择预测力评估[J]. 江苏农业学报, 2023, 39(2):313-320. doi: 10.3969/j.issn.1000-4440.2023.02.002
[12] SPINDEL J, BEGUM H, AKDEMIR D, et al. Correction: genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines[J]. PLOS Genetics, 2015, 11(6): e1005350. doi: 10.1371/journal.pgen.1005350
[13] 曹 珂, 陈昌文, 杨选文, 等. 桃果实单果重及可溶性固形物含量的全基因组选择分析[J]. 中国农业科学, 2023, 56(5):951-963. doi: 10.3864/j.issn.0578-1752.2023.05.011
[14] VANRADEN P M. Efficient methods to compute genomic predictions[J]. Journal of Dairy Science, 2008, 91(11): 4414-4423. doi: 10.3168/jds.2007-0980
[15] WANG J B, ZHOU Z K, ZHANG Z, et al. Expanding the BLUP alphabet for genomic prediction adaptable to the genetic architectures of complex traits[J]. Heredity (Edinb), 2018, 121(6): 648-662. doi: 10.1038/s41437-018-0075-0
[16] KLÁPŠTĚ J, LSTIBŮREK M, KOBLIHA J. Initial evaluation of half-sib progenies of Norway spruce using the best linear unbiased prediction[J]. Journal of Forest Science, 2007, 53(2): 41-46. doi: 10.17221/2136-JFS
[17] LI C R, WENG Q J, CHEN J B, et al. Genetic parameters for growth and wood mechanical properties in Eucalyptus cloeziana F. Muell[J]. New Forests, 2017, 48(1): 33-49. doi: 10.1007/s11056-016-9554-4
[18] PIEPHO H P, MÖHRING J, MELCHINGER A E, et al. BLUP for phenotypic selection in plant breeding and variety testing[J]. Euphytica, 2008, 161(1-2): 209-228. doi: 10.1007/s10681-007-9449-8
[19] MILLET E J, KRUIJER W, COUPEL-LEDRU A, et al. Genomic prediction of maize yield across European environmental conditions[J]. Nature Genetics, 2019, 51(6): 952-956. doi: 10.1038/s41588-019-0414-y
[20] CROSSA J, PÉREZ P, HICKEY J, et al. Genomic prediction in CIMMYT maize and wheat breeding programs[J]. Heredity, 2014, 112(1): 48-60. doi: 10.1038/hdy.2013.16
[21] 张春玲, 李淑梅, 赵自成, 等. 杨树新品种‘丹红杨’[J]. 林业科学, 2008, 44(1):169-169. doi: 10.3321/j.issn:1001-7488.2008.01.027
[22] ZHANG J, SONG X Q, ZHANG L, et al. Agronomic performance of 27 Populus clones evaluated after two 3-year coppice rotations in Henan, China[J]. Global Change Biology Bioenergy, 2020, 12(2): 168-181. doi: 10.1111/gcbb.12662
[23] SUN P, JIA H X, CHENG X Q, et al. Genetic architecture of leaf morphological and physiological traits in a Populus deltoides ‘Danhong’ × P. simonii ‘Tongliao1’ pedigree revealed by quantitative trait locus analysis[J]. Tree Genetics & Genomes, 2020, 16(3): 45.
[24] ZHANG P, SU Z Q, XU L, et al. Effects of fragment traits, burial orientation and nutrient supply on survival and growth in Populus deltoides × P. simonii[J]. Scientific Reports, 2016, 6: 21031. doi: 10.1038/srep21031
[25] WANG J B, ZHANG Z W. GAPIT version 3: boosting power and accuracy for genomic association and prediction[J]. Genomics, Proteomics & Bioinformatics, 2021, 19(4): 629-640.
[26] HAYES B, GODDARD M. Genome-wide association and genomic selection in animal breeding[J]. Genome, 2010, 53(11): 876-883. doi: 10.1139/G10-076
[27] HEFFNER E, LORENZ A, JANNINK J L, et al. Plant breeding with genomic selection: gain per unit time and cost[J]. Crop Science, 2010, 50(5): 1681-1690. doi: 10.2135/cropsci2009.11.0662
[28] ISIK F, BARTHOLOMÉ J, FARJAT A, et al. Genomic selection in Maritime Pine[J]. Plant Science, 2015, 242: 108-119.
[29] BOUVET J M, MAKOUANZI G, CROS D, et al. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications[J]. Heredity (Edinb), 2016, 116(2): 146-157. doi: 10.1038/hdy.2015.78
[30] CROS D, DENIS M, BOUVET J M, et al. Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm[J]. BMC Genomics, 2015, 16: 651. doi: 10.1186/s12864-015-1866-9
[31] KRISHNAPPA G, SAVADI S, TYAGI B S, et al. Integrated genomic selection for rapid improvement of crops[J]. Genomics, 2021, 113(3): 1070-1086. doi: 10.1016/j.ygeno.2021.02.007