• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长白山针阔混交林凋落物-土壤生态化学计量特征

崔雪 王海燕 邹佳何 秦倩倩 杜雪 李翔 张美娜 耿琦

引用本文:
Citation:

长白山针阔混交林凋落物-土壤生态化学计量特征

    通讯作者: 王海燕, haiyanwang72@aliyun.com
  • 中图分类号: S718.5

Eco-stoichiometry Characteristics of Litter-Soil in Coniferous and Broad-leaved Mixed Forest of Changbai Mountains

    Corresponding author: WANG Hai-yan, haiyanwang72@aliyun.com ;
  • CLC number: S718.5

  • 摘要: 目的 研究林分尺度下凋落物-土壤生态化学计量特征,阐明森林生态系统凋落物和土壤养分的变化规律以及二者的相互关系,为天然针阔混交林的经营和管理提供科学依据。 方法 以长白山北坡4块面积1 hm2的云冷杉-阔叶混交林样地为研究对象,采集0~20、20~40 cm土样,收集半分解层(F层)和完全分解层(H层)凋落物,测定凋落物碳、氮、磷与土壤pH、有机质、全氮、全磷、有效磷和速效钾,并计算凋落物现存量及凋落物-土壤化学计量比。采用相关性分析和冗余分析等方法研究云冷杉-阔叶混交林凋落物特征与土壤养分及化学计量比的关系。 结果 凋落物现存量与0~20 cm土壤碳氮比呈极显著正相关(P < 0.01)。凋落物碳、碳磷比和氮磷比均随凋落物分解程度加深显著降低(P < 0.05)。冗余分析结果表明,F层凋落物现存量与F层凋落物碳、碳磷比和H层凋落物磷具有较强的正效应。凋落物与土壤养分化学计量比均表现为碳磷比> 碳氮比 > 氮磷比。 结论 完全分解层凋落物氮是影响云冷杉-阔叶混交林0~20 cm土壤pH、有机质、全磷、速效钾和土壤碳磷比的关键因子;凋落物氮为20~40 cm土壤全氮的主要来源。因此,凋落物氮可能是驱动研究区土壤养分变化的重要因素。
  • 图 1  凋落物特征与土壤养分含量及其化学计量比的冗余分析

    Figure 1.  Redundancy analysis of litter characteristics and soil nutrient indicators and their stoichiometric ratios

    表 1  样地基本概况

    Table 1.  Characteristics of sample plots

    样地
    Plot
    海拔
    Altitude/m
    坡度
    Slope/(°)
    坡向
    Aspect
    平均树高
    Mean height/m
    平均胸径
    Mean DBH/cm
    林分密度
    Stand density/
    (株·hm−2)
    郁闭度
    Canopy density
    针叶树株数比例
    Proportion of coniferous
    stem/%
    7423东北NE13.914.59340.7447.8
    7325东北NE11.412.31 1670.7655.6
    7695东北NE13.613.71 3010.7854.7
    7733东北NE15.114.01 4370.8152.1
    注:DBH为胸径。
    Note: DBH is the abbreviation of diameter at breast height.
    下载: 导出CSV

    表 2  云冷杉-阔叶混交林各分解层凋落物养分特征

    Table 2.  Litter nutrient characteristics of decomposed horizons in spruce-fir broad-leaved mixed forest

    凋落物层
    Litter horizon
    样地
    Plot
    碳C/
    (g·kg−1)
    氮N/
    (g·kg−1)
    磷P/
    (g·kg−1)
    碳/氮
    C/N
    碳/磷
    C/P
    氮/磷
    N/P
    半分解层(F层)
    Semi-decomposed horizon
    419.90 ± 60.90 bA16.45 ± 4.71 cB1.30 ± 0.21 bB27.55 ± 8.40 aA332.66 ± 73.47 bA12.93 ± 4.32 bA
    436.03 ± 66.60 abA17.21 ± 2.64 cA1.49 ± 0.40 aB25.85 ± 5.54 aA314.07 ± 108.25 bA12.45 ± 4.48 bA
    377.58 ± 77.67 cA20.02 ± 2.19 bA1.12 ± 0.21 cB19.01 ± 4.13 bA349.70 ± 96.30 bA18.44 ± 3.57 aA
    453.22 ± 93.73 aA21.76 ± 3.01 aA1.12 ± 0.22 cB21.31 ± 6.07 bA417.03 ± 110.11 aA19.93 ± 4.03 aA
    完全分解层(H层)
    Completely decomposed horizon
    354.22 ± 81.90 aB17.71 ± 3.07 bA2.73 ± 0.70 bA20.32 ± 4.78 bB135.32 ± 39.80 bB6.80 ± 1.86 bB
    368.90 ± 76.73 aB16.70 ± 2.75 cA2.14 ± 0.48 cA22.60 ± 5.75 aB181.39 ± 58.60 aB8.09 ± 2.06 aB
    321.32 ± 80.40 bB17.54 ± 3.00 bB2.64 ± 0.82 bA18.60 ± 5.13 bA132.57 ± 51.26 bB7.24 ± 2.41 bB
    358.70 ± 108.30 aB19.30 ± 2.70 aB3.18 ± 0.82 aA19.00 ± 6.78 bB120.81 ± 54.00 bB6.48 ± 2.00 bB
    注:同列不同小写字母表示样地间差异显著(P < 0.05);同列不同大写字母表示凋落物层间差异显著(P < 0.05)。
      Notes: Means that in the same column do not share the same lowercase letters are significantly different at 0.05 level between the sample plots and that do not share the same capital letters are significantly different at 0.05 level between litter horizons.
    下载: 导出CSV

    表 3  云冷杉-阔叶混交林土壤化学性质指标描述统计分析

    Table 3.  Descriptive statistics of soil chemical indicators in spruce-fir broad-leaved mixed forest

    土壤深度
    Soil depth/
    cm
    样地
    Plot
    pH有机质
    Organic
    matter/
    (g·kg−1)
    全氮
    Total
    nitrogen/
    (g·kg−1)
    全磷
    Total
    phosphorus/
    (g·kg−1)
    有效磷
    Available
    phosphorus/
    (mg·kg−1)
    速效钾
    Readily
    available
    potassium/
    (mg·kg−1)
    碳/氮
    C/N
    碳/磷
    C/P
    氮/磷
    N/P
    0~205.49 ±
    0.25 aB
    155.41 ±
    96.81 aA
    5.83 ±
    3.18 aA
    0.88 ±
    0.31 aA
    7.31 ±
    4.89 bA
    128.86 ±
    54.27 aA
    30.68 ±
    22.60 aA
    176.45 ±
    87.07 bcA
    6.84 ±
    3.24 aA
    4.76 ±
    0.18 dB
    121.59 ±
    36.21 bA
    4.39 ±
    2.07 bA
    0.75 ±
    0.17 cA
    10.48 ±
    3.82 aA
    122.68 ±
    39.29 aA
    30.07 ±
    7.90 aB
    163.67 ±
    38.91 cA
    5.84 ±
    2.45 bA
    4.99 ±
    0.24 cB
    144.78 ±
    40.77 aA
    4.51 ±
    1.41 bA
    0.81 ±
    0.19 bA
    10.80 ±
    3.69 aA
    93.31 ±
    36.84 bA
    33.14 ±
    7.37 aA
    180.90 ±
    45.41 bA
    5.57 ±
    1.27 bA
    5.21 ±
    0.23 bA
    153.14 ±
    63.53 aA
    4.82 ±
    2.03 bA
    0.75 ±
    0.22 cA
    5.06 ±
    2.01 cA
    114.65 ±
    76.91 aA
    32.34 ±
    7.03 aA
    205.43 ±
    64.94 aA
    6.47 ±
    2.31 aA
    20~405.62 ±
    0.37 aA
    76.13 ±
    45.89 aB
    2.51 ±
    1.63 abB
    0.61 ±
    0.17 bB
    4.00 ±
    1.94 cB
    73.20 ±
    29.94 bB
    31.10 ±
    8.16 bA
    121.87 ±
    52.24 bB
    4.08 ±
    2.17 aB
    4.94 ±
    0.44 cA
    60.79 ±
    23.87 bB
    1.70 ±
    0.92 cB
    0.57 ±
    0.13 bB
    7.63 ±
    2.14 aB
    53.50 ±
    17.16 cB
    42.65 ±
    22.00 aA
    107.20 ±
    35.10 cB
    2.91 ±
    1.20 cB
    5.11 ±
    0.41 bA
    77.67 ±
    22.89 aB
    2.33 ±
    0.99 bB
    0.67 ±
    0.19 aB
    6.49 ±
    2.14 bB
    77.23 ±
    24.32 bB
    38.93 ±
    32.50 aA
    117.71 ±
    28.72 bcB
    3.50 ±
    1.20 bB
    5.18 ±
    0.36 bA
    83.50 ±
    30.30 aB
    2.71 ±
    1.03 aB
    0.63 ±
    0.18 abB
    3.15 ±
    1.46 dB
    102.68 ±
    50.80 aB
    31.43 ±
    6.21 bA
    137.87 ±
    46.90 aB
    4.43 ±
    1.41 aB
    注:同列不同小写字母表示同一土壤深度各样地间差异显著(P < 0.05);同列不同大写字母表示同一样地不同土壤深度间差异显著(P < 0.05)。
      Notes: Means that in the same column do not share the same lowercase letters are significantly different at 0.05 level among different plots at the same soil depth and that do not share the same capital letters are significantly different at 0.05 level between different soil depths in the same plot.
    下载: 导出CSV

    表 4  凋落物指标与不同土层土壤养分指标的相关性分析

    Table 4.  Correlation analysis between litter indicators and soil nutrients at varied depths

    土壤深度
    Soil depth/cm
    指标
    Indicator
    土壤
    pH
    有机质Organic matter全氮
    Total
    nitrogen
    全磷
    Total phosphorus
    有效磷
    Available phosphorus
    速效钾
    Readily available potassium
    碳/氮
    C/N
    碳/磷
    C/P
    氮/磷
    N/P
    0~20 FLSC 0.160** 0.103* −0.032 0.061 −0.093 0.003 0.131** 0.056 −0.088
    FLC −0.006 −0.041 −0.049 −0.091 −0.080 0.151** 0.006 0.015 0.003
    FLN 0.029 0.179** −0.056 0.049 −0.156** −0.048 0.261** 0.169** −0.069
    FLP −0.092 −0.170** −0.072 −0.049 0.061 0.176** −0.115* −0.198** −0.091
    FLCN −0.001 −0.162** 0.017 −0.099* 0.021 0.145** −0.222* −0.130** 0.075
    FLCP 0.081 0.101* 0.008 −0.041 −0.143** −0.070 0.116* 0.149** 0.045
    FLNP 0.051 0.219** 0.017 0.043 −0.115* −0.178** 0.243** 0.226** 0.006
    HLSC −0.025 0.131** −0.029 0.060 0.042 −0.132** 0.184** 0.101* −0.068
    HLC 0.051 0.116* 0.067 0.138** 0.016 0.169** 0.045 0.029 −0.025
    HLN 0.174** 0.098 0.095 0.021 −0.240** −0.001 −0.013 0.139** 0.162**
    HLP 0.261** 0.212** 0.018 0.169** −0.286** −0.010 0.219** 0.113* −0.068
    HLCN −0.050 0.020 −0.008 0.091 0.123* 0.183** 0.022 −0.042 −0.093
    HLCP −0.189** −0.078 0.042 −0.023 0.253** 0.117* −0.151** −0.065 0.055
    HLNP −0.173** −0.131** 0.050 −0.132** 0.170** −0.022 −0.232** −0.044 0.160**
    20~40 FLSC 0.119* 0.061 0.084 0.041 −0.136** 0.006 −0.053 0.051 0.097
    FLC −0.008 −0.030 −0.002 −0.086 −0.042 0.063 −0.027 0.026 0.076
    FLN 0.012 0.218** 0.196** 0.095 −0.122* 0.267** −0.036 0.197** 0.201**
    FLP −0.047 −0.161** −0.139** −0.096 0.181** −0.204** 0.009 −0.147** −0.107*
    FLCN 0.034 −0.199** −0.147** −0.144** 0.038 −0.167** −0.013 −0.143** −0.089
    FLCP 0.044 0.133** 0.131** 0.014 −0.192** 0.234** −0.037 0.139** 0.142**
    FLNP 0.015 0.255** 0.206** 0.125* −0.180* 0.318** 0.001 0.212** 0.176**
    HLSC 0.013 0.143** 0.043 0.096 −0.060 0.251** 0.075 0.099* 0.019
    HLC 0.053 0.048 0.069 0.140** 0.081 −0.102* −0.06 −0.044 0.001
    HLN 0.056 0.164** 0.207** 0.097 −0.148** 0.172** −0.103* 0.107* 0.159**
    HLP 0.246** 0.194** 0.305** 0.140** −0.294** 0.224** 0.103* −0.107* −0.159**
    HLCN 0.023 −0.070 −0.056 0.054 0.158** −0.227** 0.016 −0.092 −0.089
    HLCP −0.151** −0.115* −0.170** −0.025 0.314** −0.264** 0.130** −0.121* −0.215**
    HLNP −0.213** −0.085 −0.153** −0.082 0.230** −0.112* 0.129** −0.066 −0.175**
    注:FLSC:F层凋落物现存量;FLC:F层凋落物碳含量;FLN:F层凋落物氮含量;FLP:F层凋落物磷含量; FLCN:F层凋落物碳氮比;FLCP:F层凋落物碳磷比;FLNP:F层凋落物氮磷比;HLSC:H层凋落物现存量;HLC:H层凋落物碳含量;HLN:H层凋落物氮含量;HLP:H层凋落物磷含量;HLCN:H层凋落物碳氮比;HLCP:H层凋落物碳磷比;HLNP:H层凋落物氮磷比(下同);**表示在P < 0.01水平极显著相关;*表示在P < 0.05水平显著相关。
      Notes: FLSC: litter standing crop in the semi-decomposed horizon; FLC: litter carbon concentration in the semi-decomposed horizon; FLN: litter nitrogen concentration in the semi-decomposed horizon; FLP: litter phosphorus concentration in the semi-decomposed horizon; FLCN: litter C/N ratio in the semi-decomposed horizon; FLCP: litter C/P ratio in the semi-decomposed horizon; FLNP: litter N/P ratio in the semi-decomposed horizon; HLSC: litter standing crop in the completely decomposed horizon; HLC: litter carbon concentration in the completely decomposed horizon; HLN: litter nitrogen concentration in the completely decomposed horizon; HLP: litter phosphorus concentration in the completely decomposed horizon; HLCN: litter C/N ratio in the completely decomposed horizon; HLCP: litter C/P ratio in the completely decomposed horizon; HLNP: litter N/P ratio in the completely decomposed horizon (the same below); ** meant a very significant correlation at 0.01 level; * meant a significant correlation at 0.05 level.
    下载: 导出CSV
  • [1]

    AZEEZ J O. Recycling organic waste in managed tropical forest ecosystems: effects of arboreal litter types on soil chemical properties in Abeokuta, southwestern Nigeria[J]. Journal of Forestry Research, 2019, 30(5): 1903-1911. doi: 10.1007/s11676-018-0753-z
    [2] 田慧敏, 刘彦春, 刘世荣. 暖温带麻栎林凋落物调节土壤碳排放通量对降雨脉冲的响应[J]. 生态学报, 2022, 42(10):3889-3896.

    [3] 苏卓侠, 苏冰倩, 上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展[J]. 水土保持研究, 2022, 29(2):406-413.

    [4] 卫芯宇, 倪祥银, 谌 亚, 等. 三种不同类型亚高山森林凋落物输入对土壤腐殖化的影响[J]. 生态学报, 2021, 41(20):8266-8275.

    [5]

    DAVID B, ALBERTO R, ANTONIO G, et al. The influence of elevation on soil properties and forest litter in the Siliceous Moncayo Massif, SW Europe[J]. Journal of Mountain Science, 2016, 13(12): 2155-2169. doi: 10.1007/s11629-015-3773-6
    [6] 俞月凤, 何铁光, 曾成城, 等. 喀斯特区不同退化程度植被群落植物-凋落物-土壤-微生物生态化学计量特征[J]. 生态学报, 2022, 42(3):935-946.

    [7] 崔高阳, 曹 扬, 陈云明. 陕西省森林各生态系统组分氮磷化学计量特征[J]. 植物生态学报, 2015, 39(12):1146-1155.

    [8] 孙思怡, 卢胜旭, 陆宇明, 等. 杉木林下套种阔叶树对土壤生态酶活性及其化学计量比的影响[J]. 林业科学研究, 2021, 34(1):106-113.

    [9] 郝清玉, 杨 彬, 周玉萍. 木麻黄凋落物现存量的数量特征及影响因素[J]. 森林与环境学报, 2020, 40(4):356-362.

    [10] 秦倩倩, 王海燕, 李 翔, 等. 东北天然针阔混交林凋落物磷素空间异质性及其影响因素[J]. 生态学报, 2019, 39(12):4519-4529.

    [11]

    ROSTAMIZAD P, HOSSEINI V, SAMANI K M. Effects of Persian turpentine tree litter and slope aspect on soil chemical properties in a Zagros forest, Iran[J]. Journal of Forestry Research, 2020, 31(5): 1583-1588. doi: 10.1007/s11676-019-00950-9
    [12]

    MARIA M, WOLFGANG W, JÖRG S, et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter[J]. Ecology, 2012, 93(4): 770-782. doi: 10.1890/11-0721.1
    [13]

    PARTON W, SILVER W L, BURKE I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315(5810): 361-364. doi: 10.1126/science.1134853
    [14]

    ZHOU G Y, XU S, CIAIS P, et al. Climate and litter C/N ratio constrain soil organic carbon accumulation[J]. National Science Review, 2019, 6(4): 746-757. doi: 10.1093/nsr/nwz045
    [15] 赵 畅, 龙 健, 李 娟, 等. 茂兰喀斯特原生林不同坡向及分解层的凋落物现存量和养分特征[J]. 生态学杂志, 2018, 37(2):295-303.

    [16] 赵金龙, 王泺鑫, 韩海荣, 等. 森林生态系统服务功能价值评估研究进展与趋势[J]. 生态学杂志, 2013, 32(8):2229-2237.

    [17] 王 璐, 王海燕, 何丽鸿, 等. 基于GIS的土壤肥力质量综合评价——以天然云冷杉针阔混交林为例[J]. 土壤通报, 2016, 47(5):1223-1230.

    [18] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 14-111.

    [19] 李 翔, 王海燕, 秦倩倩, 等. 采伐对天然云冷杉针阔混交林半分解层凋落物现存量、含水率及林分郁闭度空间异质性的影响[J]. 林业科学研究, 2018, 31(6):114-120.

    [20]

    GE J L, XIE Z Q. Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species[J]. Plant Ecology, 2017, 218(9): 1063-1076. doi: 10.1007/s11258-017-0752-8
    [21] 张乃木, 王克勤, 宋娅丽, 等. 滇中亚高山森林林下植被和凋落物生态化学计量特征[J]. 林业科学研究, 2020, 33(4):127-134.

    [22]

    BAI X J, WANG B R, AN S S, et al. Response of forest species to C:N:P in the plant-litter-soil system and stoichiometric homeostasis of plant tissues during afforestation on the Loess Plateau, China[J]. Catena, 2019, 183(1): 104186.
    [23] 秦江环, 张春雨, 赵秀海. 温带针阔混交林基于植物-土壤反馈的Janzen-Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631.

    [24] 刘 璐, 葛结林, 舒化伟, 等. 神农架常绿落叶阔叶混交林碳氮磷化学计量比[J]. 植物生态学报, 2019, 43(6):482-489.

    [25]

    VITOUSEK P. Nutrient cycling and nutrient use efficiency[J]. American Naturalist, 1982, 119(4): 553-572. doi: 10.1086/283931
    [26]

    CHAPMAN K, WHITTAKER J B, HEAL O W. Metabolic and faunal activity in litters of tree mixtures compared with pure stands[J]. Agriculture, Ecosystems and Environment, 1988, 24(1-3): 33-40. doi: 10.1016/0167-8809(88)90054-0
    [27]

    HAN W X, FANG J Y, GUO D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x
    [28] 杜雨潭, 陈金磊, 李雷达, 等. 亚热带不同植被恢复林地凋落物层碳、氮、磷化学计量特征[J]. 中南林业科技大学学报, 2020, 40(2):108-119.

    [29] 李汶倬, 高 扬, 杨 柳, 等. 东北地区落叶松新鲜针叶凋落物碳氮磷化学计量特征对环境变化的响应[J]. 生态学杂志, 2020, 39(9):2832-2841.

    [30]

    TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C: N: P ratios in China's soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139-151. doi: 10.1007/s10533-009-9382-0
    [31] 倪惠菁, 苏文会, 范少辉, 等. 养分输入方式对森林生态系统土壤养分循环的影响研究进展[J]. 生态学杂志, 2019, 38(3):863-872.

    [32]

    QI K B, PANG X Y, YANG B. Soil carbon, nitrogen and phosphorus ecological stoichiometry shifts with tree species in subalpine plantations[J]. PeerJ, 2020, 8: e9702. doi: 10.7717/peerj.9702
    [33] 秦 娟, 孔海燕, 刘 华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):68-76,82.

    [34]

    HÄTTENSCHWILER S, JØRGENSEN H B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest[J]. Journal of Ecology, 2010, 98(4): 754-763. doi: 10.1111/j.1365-2745.2010.01671.x
    [35]

    TONG R, ZHOU BZ, JIANG LN, et al. Leaf litter carbon, nitrogen and phosphorus stoichiometry of Chinese fir (Cunninghamia lanceolata) across China[J]. Global Ecology and Conservation, 2021, 27: e01542. doi: 10.1016/j.gecco.2021.e01542
    [36]

    THIESSEN S, GLEIXNER G, WUTZLER T, et al. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass: An incubation study[J]. Soil Biology and Biochemistry, 2013, 57: 739-748. doi: 10.1016/j.soilbio.2012.10.029
    [37]

    YU G G, ZHAO H B, CHEN J, et al. Soil microbial community dynamics mediate the priming effects caused by in situ decomposition of fresh plant residues[J]. Science of the Total Environment, 2020, 737: 139708. doi: 10.1016/j.scitotenv.2020.139708
  • [1] 许宇星王志超张丽丽竹万宽杜阿朋 . 不同种植年限尾巨桉人工林叶片-凋落物-土壤碳氮磷化学计量特征. 林业科学研究, 2018, 31(6): 168-174. doi: 10.13275/j.cnki.lykxyj.2018.06.023
    [2] 巩大鹏毕华兴王劲峰赵丹阳黄靖涵宋艺琳 . 晋西黄土区不同密度刺槐人工林叶片-枯落物-土壤化学计量特征. 林业科学研究, 2024, 37(2): 156-164. doi: 10.12403/j.1001-1498.20230299
    [3] 党宏忠周泽福赵雨森杨洪学 . 祁连山水源涵养林土壤水文特征研究. 林业科学研究, 2006, 19(1): 39-44.
    [4] 秦倩倩王海燕李翔解雅麟雷相东郑永林杨丹丹 . 长白山云冷杉针阔混交林半分解层凋落物生态功能. 林业科学研究, 2019, 32(1): 147-152. doi: 10.13275/j.cnki.lykxyj.2019.01.020
    [5] 邓承佳袁访卜通达梁红宋理洪 . 土壤动物对黔中地区喀斯特森林凋落物分解的影响. 林业科学研究, 2022, 35(3): 72-81. doi: 10.13275/j.cnki.lykxyj.2022.03.009
    [6] 李翔王海燕秦倩倩解雅麟王福增郑永林杨丹丹 . 采伐对天然云冷杉针阔混交林半分解层凋落物现存量、含水率及林分郁闭度空间异质性的影响. 林业科学研究, 2018, 31(6): 114-120. doi: 10.13275/j.cnki.lykxyj.2018.06.016
    [7] 张芸香张晋明郭晋平 . 文峪河上游河岸林凋落物及其分解过程研究. 林业科学研究, 2011, 24(5): 634-640.
    [8] 张瑛徐庆高德强隋明浈张蓓蓓任冉冉左海军汪思龙 . 湖南会同不同林分类型杉木人工林凋落物水文效应. 林业科学研究, 2021, 34(6): 81-89. doi: 10.13275/j.cnki.lykxyj.2021.06.010
    [9] 王梦思马红亮官晓辉高人尹云锋 . 凋落物和铵态氮添加对亚热带罗浮栲和杉木林土壤碳氮淋溶的影响. 林业科学研究, 2022, 35(6): 35-43. doi: 10.13275/j.cnki.lykxyj.2022.006.004
    [10] 张清海叶功富林益明 . 海岸沙地木麻黄人工林凋落物归还量及其热值动态研究. 林业科学研究, 2006, 19(5): 600-605.
    [11] 原雅楠李正才王斌张雨洁黄盛怡 . 不同品种榧树针叶-土壤C、N、P生态化学计量特征研究. 林业科学研究, 2020, 33(6): 49-56. doi: 10.13275/j.cnki.lykxyj.2020.06.006
    [12] 杨超黄力高祥阳齐猛周侠杨永川 . 缙云山常绿阔叶林凋落动态及组成. 林业科学研究, 2016, 29(1): 1-9.
    [13] 段文标龚建美周美珩陈立新张玉双李梦薇翟亚坤关鑫 . 不同林型天然红松混交林林隙大小和枯叶分解对土壤微生物碳的影响. 林业科学研究, 2017, 30(2): 268-275. doi: 10.13275/j.cnki.lykxyj.2017.02.012
    [14] 张春雨赵秀海郑景明 . 长白山阔叶红松林林隙与林下土壤性质对比研究. 林业科学研究, 2006, 19(3): 347-352.
    [15] 马红亮魏春兰李磊高人尹云锋杨玉盛 . 添加葡萄糖对杉木人工林土壤氮素转化及净矿化和硝化的影响. 林业科学研究, 2014, 27(3): 356-362.
    [16] 张雷燕刘常富王彦辉时忠杰何常清熊伟于澎涛 . 宁夏六盘山南侧森林枯落物及土壤的水文生态功能研究. 林业科学研究, 2007, 20(1): 15-20.
    [17] 赵雪梅孙向阳王海燕康向阳 . 不同密度三倍体毛白杨试验林土壤养分的动态变化. 林业科学研究, 2012, 25(6): 732-738.
    [18] 赵满兴马文全张霞马卓白二磊南国卫 . 陕北不同恢复年限中国沙棘人工林土壤可溶性氮组分时空变化研究. 林业科学研究, 2023, 36(1): 146-153. doi: 10.12403/j.1001-1498.20220418
    [19] 王娜程瑞梅肖文发沈雅飞 . 三峡库区马尾松根和叶片的生态化学计量特征. 林业科学研究, 2016, 29(4): 536-544.
    [20] 王凯雷虹王宗琰吕林有宋立宁 . 干旱胁迫下小叶锦鸡儿幼苗C、N、P分配规律及化学计量特征. 林业科学研究, 2019, 32(4): 47-56. doi: 10.13275/j.cnki.lykxyj.2019.04.007
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  3377
  • HTML全文浏览量:  1652
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 录用日期:  2022-08-19
  • 网络出版日期:  2023-02-07
  • 刊出日期:  2023-06-20

长白山针阔混交林凋落物-土壤生态化学计量特征

    通讯作者: 王海燕, haiyanwang72@aliyun.com
  • 北京林业大学林学院,森林培育与保护教育部重点实验室,北京 100083

摘要:  目的 研究林分尺度下凋落物-土壤生态化学计量特征,阐明森林生态系统凋落物和土壤养分的变化规律以及二者的相互关系,为天然针阔混交林的经营和管理提供科学依据。 方法 以长白山北坡4块面积1 hm2的云冷杉-阔叶混交林样地为研究对象,采集0~20、20~40 cm土样,收集半分解层(F层)和完全分解层(H层)凋落物,测定凋落物碳、氮、磷与土壤pH、有机质、全氮、全磷、有效磷和速效钾,并计算凋落物现存量及凋落物-土壤化学计量比。采用相关性分析和冗余分析等方法研究云冷杉-阔叶混交林凋落物特征与土壤养分及化学计量比的关系。 结果 凋落物现存量与0~20 cm土壤碳氮比呈极显著正相关(P < 0.01)。凋落物碳、碳磷比和氮磷比均随凋落物分解程度加深显著降低(P < 0.05)。冗余分析结果表明,F层凋落物现存量与F层凋落物碳、碳磷比和H层凋落物磷具有较强的正效应。凋落物与土壤养分化学计量比均表现为碳磷比> 碳氮比 > 氮磷比。 结论 完全分解层凋落物氮是影响云冷杉-阔叶混交林0~20 cm土壤pH、有机质、全磷、速效钾和土壤碳磷比的关键因子;凋落物氮为20~40 cm土壤全氮的主要来源。因此,凋落物氮可能是驱动研究区土壤养分变化的重要因素。

English Abstract

  • 土壤养分状况受凋落物质量及其化学组成的直接影响,土壤中绝大部分的养分元素来自凋落物分解、养分的释放和淋溶过程[1]。凋落物的生成和分解与植物群落息息相关,植物体内约90%的氮(N)、磷(P)、钾(K)来源于凋落物的养分再循环[2]。因此,凋落物分解是植物向土壤输送养分的重要环节,其在植物更新、提供土壤肥力、维持生物多样性以及保证生态系统碳库稳定性方面都发挥了重要作用[3-5]

    生态化学计量比能表征森林生态系统内土壤、植物叶片和凋落物等有机体内部的养分水平,有机体内部养分元素组成比例与外部环境元素供应是否稳定,是生态化学计量学的研究前提[6]。森林土壤碳(C)、N、P元素存在相对稳定的化学计量比,受气候、地形和植被等环境因素的影响,其比值会在一定范围内发生改变[7-8]。凋落物作为向土体供应养分的主要对象,其养分含量和现存量对土壤养分变化具有显著影响[9]。因树种、林分起源和环境条件等因素发生变化,凋落物现存量及其养分特征在不同森林生态系统中具有异质性[10-11]。分解者通过控制微生物的N、P循环过程,改变凋落物的C/N和C/P进而影响土壤养分水平[12]。凋落物C/N<40,开始出现凋落物矿化分解净氮释放[13]。Zhou等[14]通过研究2 600个中国森林生态系统的样地数据发现,较低的凋落物C/N和较高的湿度指数是提高土壤有机质积累的重要因素;赵畅等[15]研究发现,茂兰喀斯特森林凋落物现存量随土壤密度和全磷含量的减少而增加。因此,研究凋落物特征及其对土壤养分的影响对理解林分尺度下生态系统的养分循环及衡量地下生态系统稳定性具有重要意义。

    云冷杉-阔叶混交林是由红皮云杉(Picea koraiensis Nakai)、臭冷杉(Abies nephrolepis (Trautv.) Maxim.)针叶树种与白桦(Betula platyphylla Suk.)、水曲柳(Fraxinus mandshurica Rupr.)和山杨(Populus davidiana Dode)等落叶乔木树种组成的温带常绿针阔混交林,在我国环境保护和生态平衡进程中具有不可替代的功能和价值[16]。目前,国内外关于云冷杉林的研究主要集中在土壤肥力质量综合评价[17]和森林凋落物养分空间变异[11]等方面,而关于“凋落物-土壤”养分周转及其相关性研究较少。因此,本文以云冷杉-阔叶混交林为研究对象,分析不同深度(0~20、20~40 cm)土壤养分和化学计量比对不同分解程度(半分解F层和完全分解H层)凋落物C、N、P含量、现存量及其化学计量比的响应,以期阐明长白山北坡云冷杉-阔叶混交林凋落物特征及其对土壤养分的影响。

    • 研究区位于吉林省汪清林业局金沟岭林场(43º17'~43º25'N,129º25'~130º20'E),海拔300~1 200 m,坡度5º~25º。该区属季风气候,低山丘陵地貌,土壤类型主要为暗棕壤,其母质为花岗岩、玄武岩及片麻岩的残积物和堆积物,土层厚度40 cm左右。主要树种包括红皮云杉、臭冷杉、红松(Pinus koraiensis Siebold. et Zuccarini)、白桦、水曲柳和山杨[11]

    • 2013年7月,在研究区内设置了12块面积1 hm2、立地条件相似的云冷杉-阔叶混交中龄林样地。2017年8月,为了保证样本的代表性且减少误差,在12块样地中随机选取4块样地,样地基本概况见表1

      表 1  样地基本概况

      Table 1.  Characteristics of sample plots

      样地
      Plot
      海拔
      Altitude/m
      坡度
      Slope/(°)
      坡向
      Aspect
      平均树高
      Mean height/m
      平均胸径
      Mean DBH/cm
      林分密度
      Stand density/
      (株·hm−2)
      郁闭度
      Canopy density
      针叶树株数比例
      Proportion of coniferous
      stem/%
      7423东北NE13.914.59340.7447.8
      7325东北NE11.412.31 1670.7655.6
      7695东北NE13.613.71 3010.7854.7
      7733东北NE15.114.01 4370.8152.1
      注:DBH为胸径。
      Note: DBH is the abbreviation of diameter at breast height.

      在随机选取的4块样地中,各设置100个10 m × 10 m的样方,在各样方中心0.5 m × 0.5 m方形区域内,拣出最上层肉眼可识的新鲜凋落物,然后采集其下方F层(叶片外观轮廓不完整,大多数凋落物成褐色碎末状)和最底层H层(颜色发黑,达到腐朽状态)的凋落物样品装入自封袋中标记好,共计800个并称质量[11]。采用“S”形取样法,在各样方随机选取5个采样点,用土钻分别取0~20 cm和20~40 cm的土样,将5个采样点同一土层的土壤放在塑料薄膜上去除石块和植物残茬等,混合均匀后用四分法取1 kg左右装入贴有标签的自封袋中,共计800个。土样经风干、磨细后,过2 mm筛用于土壤pH、有效磷(AP)和速效钾(AK)的测定;过0.25 mm筛用于土壤有机质(SOM)、全氮(TN)和全磷(TP)的测定。

    • 土壤pH、SOM、TN、TP、AP、AK及凋落物C、N、P测定方法均参考《土壤农化分析》[18]

    • 采用 SPSS 22.0对4块样地F层和H层凋落物现存量[19]、养分含量、化学计量比和土壤养分指标等数据进行t检验和皮尔森相关分析。采用R 4.0.3对凋落物现存量、养分含量和化学计量比与土壤养分含量及其化学计量比的关系进行冗余分析(RDA)。表2、3中数据均为均值±标准差。

    • 表2表明:4块样地F层凋落物C较H层显著增大,而F层凋落物P较H层显著减小(P < 0.05);F层凋落物N含量,样地Ⅳ中最高,样地Ⅲ次之,二者显著高于样地Ⅰ和Ⅱ;H层凋落物N含量,样地Ⅳ中最高,显著高于其它3块样地(P < 0.05)。各分解阶段凋落物化学计量比均为C/P > C/N > N/P;各样地F层凋落物C/P和N/P显著高于H层,样地Ⅰ、Ⅱ和Ⅳ中F层凋落物C/N较H层显著增大(P<0.05);F层凋落物C/P和N/P均表现为样地Ⅳ > Ⅲ > Ⅰ > Ⅱ,样地Ⅳ中C/P显著高于其它样地,而N/P和样地Ⅲ无显著差异,但均显著高于样地Ⅰ和Ⅱ。H层中,样地Ⅱ中凋落物C/N、C/P和N/P均显著高于其它3块样地。

      表 2  云冷杉-阔叶混交林各分解层凋落物养分特征

      Table 2.  Litter nutrient characteristics of decomposed horizons in spruce-fir broad-leaved mixed forest

      凋落物层
      Litter horizon
      样地
      Plot
      碳C/
      (g·kg−1)
      氮N/
      (g·kg−1)
      磷P/
      (g·kg−1)
      碳/氮
      C/N
      碳/磷
      C/P
      氮/磷
      N/P
      半分解层(F层)
      Semi-decomposed horizon
      419.90 ± 60.90 bA16.45 ± 4.71 cB1.30 ± 0.21 bB27.55 ± 8.40 aA332.66 ± 73.47 bA12.93 ± 4.32 bA
      436.03 ± 66.60 abA17.21 ± 2.64 cA1.49 ± 0.40 aB25.85 ± 5.54 aA314.07 ± 108.25 bA12.45 ± 4.48 bA
      377.58 ± 77.67 cA20.02 ± 2.19 bA1.12 ± 0.21 cB19.01 ± 4.13 bA349.70 ± 96.30 bA18.44 ± 3.57 aA
      453.22 ± 93.73 aA21.76 ± 3.01 aA1.12 ± 0.22 cB21.31 ± 6.07 bA417.03 ± 110.11 aA19.93 ± 4.03 aA
      完全分解层(H层)
      Completely decomposed horizon
      354.22 ± 81.90 aB17.71 ± 3.07 bA2.73 ± 0.70 bA20.32 ± 4.78 bB135.32 ± 39.80 bB6.80 ± 1.86 bB
      368.90 ± 76.73 aB16.70 ± 2.75 cA2.14 ± 0.48 cA22.60 ± 5.75 aB181.39 ± 58.60 aB8.09 ± 2.06 aB
      321.32 ± 80.40 bB17.54 ± 3.00 bB2.64 ± 0.82 bA18.60 ± 5.13 bA132.57 ± 51.26 bB7.24 ± 2.41 bB
      358.70 ± 108.30 aB19.30 ± 2.70 aB3.18 ± 0.82 aA19.00 ± 6.78 bB120.81 ± 54.00 bB6.48 ± 2.00 bB
      注:同列不同小写字母表示样地间差异显著(P < 0.05);同列不同大写字母表示凋落物层间差异显著(P < 0.05)。
        Notes: Means that in the same column do not share the same lowercase letters are significantly different at 0.05 level between the sample plots and that do not share the same capital letters are significantly different at 0.05 level between litter horizons.
    • 表3可知:研究区土壤整体呈弱酸性;土壤养分含量均随土壤深度增加而显著减小(P < 0.05)。0~20 cm土层,样地Ⅰ和Ⅲ中TP较高,显著高于其他2块样地;样地Ⅲ中AK显著低于其它样地(P < 0.05)。20~40 cm土层,样地Ⅱ中SOM和TN均显著低于其它样地(P < 0.05),AP在不同样地间差异显著(P < 0.05)。土壤C/P和N/P均随土壤深度增加而显著减小(P < 0.05)。0~20 cm土层,不同样地土壤C/N差异不显著(P > 0.05),样地Ⅰ和Ⅳ中土壤N/P显著高于其他样地(P < 0.05)。20~40 cm土层,土壤N/P样地Ⅳ中最大,样地Ⅰ次之,二者均显著高于样地Ⅱ和Ⅲ(P < 0.05)。样地Ⅱ中20~40 cm土层土壤C/N显著高于0~20 cm土层(P < 0.05),0~20 cm和20~40 cm土层土壤C/P均是样地Ⅳ中最大。

      表 3  云冷杉-阔叶混交林土壤化学性质指标描述统计分析

      Table 3.  Descriptive statistics of soil chemical indicators in spruce-fir broad-leaved mixed forest

      土壤深度
      Soil depth/
      cm
      样地
      Plot
      pH有机质
      Organic
      matter/
      (g·kg−1)
      全氮
      Total
      nitrogen/
      (g·kg−1)
      全磷
      Total
      phosphorus/
      (g·kg−1)
      有效磷
      Available
      phosphorus/
      (mg·kg−1)
      速效钾
      Readily
      available
      potassium/
      (mg·kg−1)
      碳/氮
      C/N
      碳/磷
      C/P
      氮/磷
      N/P
      0~205.49 ±
      0.25 aB
      155.41 ±
      96.81 aA
      5.83 ±
      3.18 aA
      0.88 ±
      0.31 aA
      7.31 ±
      4.89 bA
      128.86 ±
      54.27 aA
      30.68 ±
      22.60 aA
      176.45 ±
      87.07 bcA
      6.84 ±
      3.24 aA
      4.76 ±
      0.18 dB
      121.59 ±
      36.21 bA
      4.39 ±
      2.07 bA
      0.75 ±
      0.17 cA
      10.48 ±
      3.82 aA
      122.68 ±
      39.29 aA
      30.07 ±
      7.90 aB
      163.67 ±
      38.91 cA
      5.84 ±
      2.45 bA
      4.99 ±
      0.24 cB
      144.78 ±
      40.77 aA
      4.51 ±
      1.41 bA
      0.81 ±
      0.19 bA
      10.80 ±
      3.69 aA
      93.31 ±
      36.84 bA
      33.14 ±
      7.37 aA
      180.90 ±
      45.41 bA
      5.57 ±
      1.27 bA
      5.21 ±
      0.23 bA
      153.14 ±
      63.53 aA
      4.82 ±
      2.03 bA
      0.75 ±
      0.22 cA
      5.06 ±
      2.01 cA
      114.65 ±
      76.91 aA
      32.34 ±
      7.03 aA
      205.43 ±
      64.94 aA
      6.47 ±
      2.31 aA
      20~405.62 ±
      0.37 aA
      76.13 ±
      45.89 aB
      2.51 ±
      1.63 abB
      0.61 ±
      0.17 bB
      4.00 ±
      1.94 cB
      73.20 ±
      29.94 bB
      31.10 ±
      8.16 bA
      121.87 ±
      52.24 bB
      4.08 ±
      2.17 aB
      4.94 ±
      0.44 cA
      60.79 ±
      23.87 bB
      1.70 ±
      0.92 cB
      0.57 ±
      0.13 bB
      7.63 ±
      2.14 aB
      53.50 ±
      17.16 cB
      42.65 ±
      22.00 aA
      107.20 ±
      35.10 cB
      2.91 ±
      1.20 cB
      5.11 ±
      0.41 bA
      77.67 ±
      22.89 aB
      2.33 ±
      0.99 bB
      0.67 ±
      0.19 aB
      6.49 ±
      2.14 bB
      77.23 ±
      24.32 bB
      38.93 ±
      32.50 aA
      117.71 ±
      28.72 bcB
      3.50 ±
      1.20 bB
      5.18 ±
      0.36 bA
      83.50 ±
      30.30 aB
      2.71 ±
      1.03 aB
      0.63 ±
      0.18 abB
      3.15 ±
      1.46 dB
      102.68 ±
      50.80 aB
      31.43 ±
      6.21 bA
      137.87 ±
      46.90 aB
      4.43 ±
      1.41 aB
      注:同列不同小写字母表示同一土壤深度各样地间差异显著(P < 0.05);同列不同大写字母表示同一样地不同土壤深度间差异显著(P < 0.05)。
        Notes: Means that in the same column do not share the same lowercase letters are significantly different at 0.05 level among different plots at the same soil depth and that do not share the same capital letters are significantly different at 0.05 level between different soil depths in the same plot.
    • 研究区凋落物现存量和养分指标与不同土层土壤养分指标的相关性存在差异(表4)。

      表 4  凋落物指标与不同土层土壤养分指标的相关性分析

      Table 4.  Correlation analysis between litter indicators and soil nutrients at varied depths

      土壤深度
      Soil depth/cm
      指标
      Indicator
      土壤
      pH
      有机质Organic matter全氮
      Total
      nitrogen
      全磷
      Total phosphorus
      有效磷
      Available phosphorus
      速效钾
      Readily available potassium
      碳/氮
      C/N
      碳/磷
      C/P
      氮/磷
      N/P
      0~20 FLSC 0.160** 0.103* −0.032 0.061 −0.093 0.003 0.131** 0.056 −0.088
      FLC −0.006 −0.041 −0.049 −0.091 −0.080 0.151** 0.006 0.015 0.003
      FLN 0.029 0.179** −0.056 0.049 −0.156** −0.048 0.261** 0.169** −0.069
      FLP −0.092 −0.170** −0.072 −0.049 0.061 0.176** −0.115* −0.198** −0.091
      FLCN −0.001 −0.162** 0.017 −0.099* 0.021 0.145** −0.222* −0.130** 0.075
      FLCP 0.081 0.101* 0.008 −0.041 −0.143** −0.070 0.116* 0.149** 0.045
      FLNP 0.051 0.219** 0.017 0.043 −0.115* −0.178** 0.243** 0.226** 0.006
      HLSC −0.025 0.131** −0.029 0.060 0.042 −0.132** 0.184** 0.101* −0.068
      HLC 0.051 0.116* 0.067 0.138** 0.016 0.169** 0.045 0.029 −0.025
      HLN 0.174** 0.098 0.095 0.021 −0.240** −0.001 −0.013 0.139** 0.162**
      HLP 0.261** 0.212** 0.018 0.169** −0.286** −0.010 0.219** 0.113* −0.068
      HLCN −0.050 0.020 −0.008 0.091 0.123* 0.183** 0.022 −0.042 −0.093
      HLCP −0.189** −0.078 0.042 −0.023 0.253** 0.117* −0.151** −0.065 0.055
      HLNP −0.173** −0.131** 0.050 −0.132** 0.170** −0.022 −0.232** −0.044 0.160**
      20~40 FLSC 0.119* 0.061 0.084 0.041 −0.136** 0.006 −0.053 0.051 0.097
      FLC −0.008 −0.030 −0.002 −0.086 −0.042 0.063 −0.027 0.026 0.076
      FLN 0.012 0.218** 0.196** 0.095 −0.122* 0.267** −0.036 0.197** 0.201**
      FLP −0.047 −0.161** −0.139** −0.096 0.181** −0.204** 0.009 −0.147** −0.107*
      FLCN 0.034 −0.199** −0.147** −0.144** 0.038 −0.167** −0.013 −0.143** −0.089
      FLCP 0.044 0.133** 0.131** 0.014 −0.192** 0.234** −0.037 0.139** 0.142**
      FLNP 0.015 0.255** 0.206** 0.125* −0.180* 0.318** 0.001 0.212** 0.176**
      HLSC 0.013 0.143** 0.043 0.096 −0.060 0.251** 0.075 0.099* 0.019
      HLC 0.053 0.048 0.069 0.140** 0.081 −0.102* −0.06 −0.044 0.001
      HLN 0.056 0.164** 0.207** 0.097 −0.148** 0.172** −0.103* 0.107* 0.159**
      HLP 0.246** 0.194** 0.305** 0.140** −0.294** 0.224** 0.103* −0.107* −0.159**
      HLCN 0.023 −0.070 −0.056 0.054 0.158** −0.227** 0.016 −0.092 −0.089
      HLCP −0.151** −0.115* −0.170** −0.025 0.314** −0.264** 0.130** −0.121* −0.215**
      HLNP −0.213** −0.085 −0.153** −0.082 0.230** −0.112* 0.129** −0.066 −0.175**
      注:FLSC:F层凋落物现存量;FLC:F层凋落物碳含量;FLN:F层凋落物氮含量;FLP:F层凋落物磷含量; FLCN:F层凋落物碳氮比;FLCP:F层凋落物碳磷比;FLNP:F层凋落物氮磷比;HLSC:H层凋落物现存量;HLC:H层凋落物碳含量;HLN:H层凋落物氮含量;HLP:H层凋落物磷含量;HLCN:H层凋落物碳氮比;HLCP:H层凋落物碳磷比;HLNP:H层凋落物氮磷比(下同);**表示在P < 0.01水平极显著相关;*表示在P < 0.05水平显著相关。
        Notes: FLSC: litter standing crop in the semi-decomposed horizon; FLC: litter carbon concentration in the semi-decomposed horizon; FLN: litter nitrogen concentration in the semi-decomposed horizon; FLP: litter phosphorus concentration in the semi-decomposed horizon; FLCN: litter C/N ratio in the semi-decomposed horizon; FLCP: litter C/P ratio in the semi-decomposed horizon; FLNP: litter N/P ratio in the semi-decomposed horizon; HLSC: litter standing crop in the completely decomposed horizon; HLC: litter carbon concentration in the completely decomposed horizon; HLN: litter nitrogen concentration in the completely decomposed horizon; HLP: litter phosphorus concentration in the completely decomposed horizon; HLCN: litter C/N ratio in the completely decomposed horizon; HLCP: litter C/P ratio in the completely decomposed horizon; HLNP: litter N/P ratio in the completely decomposed horizon (the same below); ** meant a very significant correlation at 0.01 level; * meant a significant correlation at 0.05 level.

      0~20 cm土层,F层和H层凋落物现存量(FLSC&HLSC)均与土壤C/N呈极显著正相关(P < 0.01),且HLSC(r = 0.184)较FLSC(r = 0.131)与土壤C/N相关系数大,相关性更强。F层凋落物碳(FLC)仅与土壤AK呈极显著正相关(P < 0.01),而H层凋落物碳(HLC)与土壤TP和AK呈极显著正相关(P < 0.01),与SOM呈显著正相关(P < 0.05)。F和H层凋落物磷(FLP&HLP)与SOM均呈极显著相关(P < 0.01),相关系数分别为−0.170和0.212。F层凋落物碳氮比(FLCN)与土壤C/N呈显著负相关(P < 0.05),与土壤C/P呈极显著负相关(P < 0.01),而H层凋落物碳氮比(HLCN)与土壤C、N、P化学计量比无显著相关性(P > 0.05)。

      20~40 cm土层,HLC与土壤TP呈极显著正相关(P < 0.01),与土壤AK呈显著负相关(P < 0.05),而FLC与土壤养分指标无显著相关性(P > 0.05)。FLCN与SOM、AK、TN、TP和土壤C/P呈极显著负相关(P < 0.01),而HLCN仅与AP和AK呈极显著相关(P < 0.01)。FLSC与土壤pH呈显著正相关(P < 0.05),HLP、H层凋落物碳磷比(HLCP)和凋落物氮磷比(HLNP)均与土壤pH呈极显著相关,且HLP与土壤pH相关性最强(r=0.246,P < 0.01)。

    • RDA分析(图1)表明:0~20 cm和20~40 cm土层前2轴凋落物因子对土壤养分含量及其化学计量比的累积解释量分别达72.60%和82.41%。FLN、HLP、HLNP和HLCP对排序结果的贡献率较大。FLSC与FLC、FLCP和HLP具有较强的正效应。FLSC、FLN、FLNP和HLP与0~20 cm土壤碳氮比(SCN1)呈正相关,其中,FLN与SCN1呈较强的正效应。HLSC与0~20 cm土层全氮(TN1)和土壤氮磷比(SNP1)呈较强负相关,与20~40 cm土壤碳磷比(SCP2)和土壤有机质(SOM2)呈较强正相关,但其对排序模型的贡献率一般。HLN与0~20 cm土壤pH1、有机质(SOM1)、碳磷比(SCP1)、全磷(TP1)和速效钾(AK1)以及20 ~ 40 cm土壤全氮(TN2)呈较强的正效应,对TN1的正效应较弱,说明HLN是影响pH1、SOM1、SCP1、TP1AK1和TN2的关键因子,而TN1受多个因子的叠加影响。

      图  1  凋落物特征与土壤养分含量及其化学计量比的冗余分析

      Figure 1.  Redundancy analysis of litter characteristics and soil nutrient indicators and their stoichiometric ratios

    • 凋落物养分含量一方面取决于生物因素(植被特性对养分的吸收能力),另一方面来自非生物因素(气温和降水等环境因子)[20]。研究区凋落物C平均含量为386.23 g·kg−1,高于滇中亚高山5种典型林分凋落物平均C含量(368.01 g·kg−1),低于黄土高原子午岭地区油松林凋落物C含量(501.02 g·kg−1[21-22]。研究区属于温带季风气候区,碳贮存能力较强,但样地中针叶树种比例高,较多的难分解物质降低了凋落物分解速率,减弱了碳归还能力[4, 23]。研究区凋落物平均N、P含量(18.34、1.97 g·kg−1)高于落叶阔叶混交林(12.23、0.46 g·kg−1[24]。我国植被叶片N、P含量随纬度增加呈线性递增关系,且针、阔叶混合型凋落物较落叶阔叶凋落物具有更大的固氮潜力[25-27]

      化学计量比较单一的C、N、P养分更能够反映凋落物养分贮存和归还能力。研究区凋落物C/N、C/P和N/P随凋落物分解加剧呈降低趋势,与前人研究结果一致[28],这主要是由于凋落物中N、P养分的释放稍缓于质量损失[27]。与东北地区落叶松人工林凋落物相比[29],云冷杉-阔叶混交林凋落物C/N和C/P较低,而N/P较高,这是由于落叶松人工林凋落物样品较新鲜,养分含量仅取决于树种因素,而研究区凋落物样品来源于样地的F层和H层,养分含量除受针阔树种比例影响外,还与样地微环境以及元素自身所发生的迁移、淋溶和固定作用有关。

    • 云冷杉-阔叶混交林作为长白山北坡典型的天然林分,其土壤肥力水平较高,SOM、TN和TP含量均值分别为109.13、3.60、0.71 g·kg−1,高于全国平均水平(19.17、1.06、0.65 g·kg−1[30]。本研究中,SOM、TN、TP、AP和AK具有明显的表聚现象,树种混交使大量凋落物在地表积聚,且表层土壤植物根系富集,微生物活跃,有利于凋落物分解和养分回归[31]

      土壤养分化学计量比能够反映养分有效性并用来分析元素在不同生态系统之间的动态变化。云冷杉-阔叶混交林土壤C/N和C/P均值(33.80和151.39)高于全国土壤水平(11.90和61.00),而N/P(4.96)略低于全国土壤水平(5.20)[30],说明样地土壤P的有效性较高。研究区土壤C/P和N/P随土壤深度增加而降低,说明在深层土壤中P的有效性更高,这与Qi等[32]的研究结果一致。当土壤C/P低于200时,微生物体内碳素的增加幅度小,同时有机磷的净矿化作用加强,导致土壤中磷含量增加[33]。因此,研究区土壤磷含量较为充足。此外,土壤C/N随有机质矿化程度加深而降低,研究区土壤的高C/N可能会减弱有机质的矿化速率,阻碍N素在生态系统内的循环,植物生长可能受到N限制。

    • 相关分析和RDA结果表明:云冷杉-阔叶混交林凋落物现存量主要影响土壤pH、有机质、有效磷、土壤C/N和凋落物氮磷。由于凋落物分解过程中需要消耗C、N源等养分以维持分解作用,改变植物叶片、凋落物和土壤中的C、N、P水平会影响凋落物分解速率和程度,进而影响凋落物现存量[34]。研究区凋落物C/P和N/P均高于土壤,这是因为云、冷杉针叶质地较硬,较阔叶有更多的难分解物质,导致凋落物分解速率减慢,现存量较多,凋落物磷的归还量较大。因此,土壤养分化学计量比低于凋落物[10];而C/N表现为凋落物 < 土壤,这与刘璐等[24]的研究结果不符。研究区凋落物C/N均值达到20,当凋落物C/N为12~20时,分解者不受氮限制,无机氮向土壤中净释放[25],植物与凋落物化学计量比具有协同性[8]。本研究中,HLP与土壤pH呈极显著正相关,说明在酸性土壤中,植物磷素利用效率下降,这与Tong等[35]的研究结果一致。研究区SOM与F层凋落物N呈极显著正相关,与F层凋落物C/N呈极显著负相关,当外源碳充足时,较高的凋落物C/N会刺激微生物分解更多的土壤腐殖质获得充足的氮,满足自身营养需求,从而发生正向“激发效应”。相反,基质中较低的C/N容易引起负向“激发效应”,进而削弱有机质的分解[36-37]。因此,研究区凋落物氮是影响SOM的重要因素。

    • 云冷杉-阔叶混交林H层较F层凋落物C、C/P和N/P显著降低,而凋落物N随凋落物分解程度变化规律不一,说明研究区凋落物碳归还能力较高。与东北地区落叶松人工纯林相比,云冷杉-阔叶混交林具有较大的固氮潜力。云冷杉-阔叶混交林土壤整体呈弱酸性,土壤有机质、全氮和全磷含量均值高于全国平均水平。随土壤深度增加,土壤养分含量显著降低,土壤C/N无显著变化,而C/P和N/P显著减小,说明研究区土壤磷含量较为充足。相关分析结果表明,云冷杉-阔叶混交林F层凋落物现存量与土壤pH相关性显著,H层凋落物现存量与土壤有机质、速效钾和C/P达到显著相关。RDA结果显示,F层凋落物N、H层凋落物P、N/P和C/P对排序结果的贡献率较大。凋落物氮为20~40 cm土层TN的主要来源,其可能是影响研究区土壤养分的重要因素。

参考文献 (37)

目录

    /

    返回文章
    返回