• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银杏过氧化氢酶基因CAT1的克隆及表达分析

程华 李琳玲 许锋 王燕 程水源

引用本文:
Citation:

银杏过氧化氢酶基因CAT1的克隆及表达分析

  • 基金项目:

    教育部新世纪优秀人才支持计划(NCET-04-0746);湖北省教育厅重大科技项目(Z200627002)和湖北省青年杰出人才基金(2003AB014)

Molecular Cloning, Characterization and Expression of Catalase1 Gene from Ginkgo biloba

  • 摘要: 利用RACE技术从银杏中克隆到过氧化氢酶基因(GbCAT1)的cDNA全长。进化树分析结果表明:GbCAT1和其他物种的CAT源自于相同的祖先。Southern 杂交显示:GbCAT1属于1个小的多基因家族。实时定量RT-PCR分析表明:GbCAT1在银杏的根、茎、叶和果中都有表达,在叶中的相对表达量最高,其次为果、茎和根。GbCAT1的转录受到ABA、渗透压、紫外、低温和高温胁迫的诱导。水杨酸处理下,GbCAT1相对表达量迅速降低。CAT1基因在逆境条件下的相对表达变化与环境胁迫有关。
  • [1]

    Scandalios J G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research,2005, 38(7): 995-1014
    [2]

    Willekens H, Inzé D, Van Montagu M, et al. Catalases in plants[J]. Molecular Breeding,1995, 1(3): 207-228
    [3]

    Redinbaugh M G, Sabre M,Scandalios J G. The distribution of catalase activity, isozyme protein, and transcript in the tissues of the developing maize seedling[J]. Plant Physiology,1990, 92(2): 375-380
    [4]

    Lee S H,An C S. Differential expression of three catalase genes in hot pepper (Capsicum annuum L.)[J]. Molecules and cells,2005, 20(2): 247-255
    [5]

    Kwon S I, Lee H,An C S. Differential expression of three catalase genes in the small radish (Rhaphanus sativus L. var. sativus)[J]. Molecules and cells,2007, 24(1): 37-44
    [6]

    Boldt R,Scandalios J G. Influence of UV-light on the expression of the Cat2 and Cat3 catalase genes in maize[J]. Free Radical Biology and Medicine,1997, 23(3): 505-514
    [7]

    Chen Z, Iyer S, Caplan A, et al. Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues[J]. Plant Physiology,1997, 114(1): 193-201
    [8]

    Eising R,Gerhardt B. Catalase synthesis and turnover during peroxisome transition in the cotyledons of Helianthus annuus L. [J]. Plant Physiology,1989, 89(3): 1000-1005
    [9]

    Esaka M, Yamada N, Kitabayashi M, et al. cDNA cloning and differential gene expression of three catalases in pumpkin[J]. Plant molecular biology,1997, 33(1): 141-155
    [10]

    Mittler R,Zilinskas B A. Purification and characterization of pea cytosolic ascorbate peroxidase[J]. Plant Physiology,1991, 97(3): 962-968
    [11]

    Mittler R,Zilinskas B A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought[J]. The Plant Journal,1994, 5(3): 397-405
    [12]

    Pinhero R G, Rao M V, Paliyath G, et al. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings[J]. Plant Physiology,1997, 114(2): 695-704
    [13]

    Esaka M, Maeshima M,Asahi T. Mechanism of the increase in catalase activity through microbody development in wounded sweet potato root tissue[J]. Plant and cell physiology,1983, 24(4): 615-623
    [14]

    Sakajo S, Nakamura K,Asahi T. Increase in catalase mRNA in wounded sweet potato tuberous root tissue[J]. Plant and cell physiology,1987, 28(5): 919-924
    [15]

    Badiani M, Schenone G, Paolacci A R, et al. Daily fluctuations of antioxidants in bean (Phaseolus vulgaris L.) leaves as affected by the presence of ambient air pollutants[J]. Plant and cell physiology,1993, 34(2): 271-279
    [16]

    Willekens H, Van Camp W, Van Montagu M, et al. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L[J]. Plant Physiology,1994, 106(3): 1007-1014
    [17]

    Prasad T K, Anderson M D, Martin B A, et al. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide[J]. The Plant Cell Online,1994, 6(1):65-74
    [18]

    Mandhania S, Madan S,Sawhney V. Antioxidant defense mechanism under salt stress in wheat seedlings[J]. Biologia Plantarum,2006, 50(2): 227-231
    [19]

    Dat J F, Pellinen R, Beeckman T, et al. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco[J]. Plant Journal,2003, 33(4): 621-632
    [20]

    Polidoros A N, Mylona P V,Scandalios J G. Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress[J]. Transgenic Research,2001,10(6): 555-569
    [21]

    Mohamed E A, Iwaki T, Munir I, et al. Overexpression of bacterial catalase in tomato leaf chloroplasts enhances photo-oxidative stress tolerance[J]. Plant, Cell and Environment,2003, 26(2):2037-2046
    [22]

    Deng Z, Wang Y, Jiang K, et al. Molecular cloning and characterization of a novel dehydrin gene from Ginkgo biloba[J]. Bioscience Reports,2006, 26(3): 203-215
    [23] 魏春红,李 毅. 现代分子生物学实验[M]. 北京: 高等教育出版社, 2006: 135-137

    [24] 蔡 荣,许 锋,陈柳吉,等. 银杏不同组织的总RNA提取方法的改进[J]. 生物技术,2007, 17(4): 38-40

    [25]

    Jansson S, Meyer-Gauen G, Cerff R, et al. Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes[J]. Journal of molecular evolution,1994, 39(1): 34-46
    [26]

    Redinbaugh M G, Wadsworth G J,Scandalios J G. Characterization of catalase transcripts and their differential expression in maize[J]. Biochimica et biophysica acta,1988, 951(1): 104
    [27]

    Kunce C M,Trelease R N. Heterogeneity of catalase in maturing and germinated cotton seeds 1[J]. Plant Physiology,1986, 81(4): 1134-1139
    [28]

    Willekens H, Langebartels C,Tire C. Differential expression of catalase gene in Nicotiana plumbaginifolia[J]. PNAS,1994, 91(22): 10450-10454
    [29]

    Guan L, Zhao J,Scandalios J G. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is likely intermediary signaling molecule for the response[J]. Plant Journal,2000, 22(2):87-95
    [30]

    Zhang A, Jiang M, Zhang J, et al. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants[J]. Plant Physiology,2006, 141(2): 475
    [31]

    Gaffney T, Friedrich L, Vernooij B, et al. Requirement of salicylic acid for the induction of systemic acquired resistance[J]. Science,1993, 261(5122): 754-756
    [32]

    Gorlach J, Volrath S, Knauf-Beiter G, et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat[J]. The Plant Cell,1996, 8(4): 629-643
    [33]

    Dat J F, Lopez-Delgado H, Foyer C H, et al. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings[J]. Plant Physiology,1998, 116(4): 1351-1357
    [34]

    Janda T, Szalai G, Tari I, et al. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants[J]. Planta,1999, 208(2): 175-180
    [35]

    Chen Z, Silva H,Klessig D F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid[J]. Science,1993, 262(5141): 1883-1886
    [36] 王晓娟,倪建福. 盐胁迫下小麦新品系89122的抗氧化酶类活性变化的研究[J]. 兰州大学学报,1999, 35(1): 140-144

    [37]

    Yang W L, Liu J M, Chen F, et al. Identification of Festuca arundinacea schreb Cat1 catalase gene and analysis of its expression under abiotic Stresses[J]. Journal of Integrative Plant Biology,2006, 48(3): 334-340
    [38]

    Goulas E, Schubert M, Kieselbach T, et al. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short-and long-term exposure to low temperature[J]. The Plant Journal,2006, 47(5): 720-734
    [39]

    Kim J Y, Park S J, Jang B, et al. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions[J]. Plant Journal,2007, 50(3): 439
    [40] 刘汉梅, 张怀渝, 谭振波, 等. 玉米Catalase-3基因克隆及低温表达研究[J]. 四川农业大学学报,2006, 24(3): 272-275

    [41]

    Rainwater D T, Gossetp D R, Millhollon E P, et al. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress[J]. Free Radical Research,1996, 25(5): 421-435
    [42]

    Feierabend J, Schaan C,Hertwig B. Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photoinhibition of photosystem II [J]. Plant Physiology,1992, 100(3): 1554-1561
  • [1] 程水源杜何为许锋陈昆松 . 银杏苯丙氨酸解氨酶基因的克隆和序列分析. 林业科学研究, 2005, 18(5): 573-577.
    [2] 单雪萌王思宁朱成磊高志民 . 毛竹 PeCPD 基因克隆与表达分析. 林业科学研究, 2019, 32(5): 58-66. doi: 10.13275/j.cnki.lykxyj.2019.05.008
    [3] 黄国文管天球赵雨云陈莫林刘宏辉 . 油茶转录因子基因CoSOC1-like的克隆和表达分析. 林业科学研究, 2022, 35(2): 129-139. doi: 10.13275/j.cnki.lykxyj.2022.02.015
    [4] 李龙张立峰齐力旺韩素英 . 日本落叶松体细胞胚胎发生相关基因LaSERK1的克隆与表达分析. 林业科学研究, 2013, 26(6): 673-680.
    [5] 张婷丁贵杰文晓鹏 . 马尾松紫色酸性磷酸酶基因PmPAP1的克隆与表达模式分析. 林业科学研究, 2016, 29(6): 797-806.
    [6] 王菁李爱王春国宋文芹陈成彬 . 日本落叶松 UDPGDH基因的cDNA克隆和表达分析. 林业科学研究, 2013, 26(S1): 76-81.
    [7] 王江英范正琪殷恒福李辛雷吴斌李纪元 . 杜鹃红山茶CaAPX基因的克隆、表达及功能分析. 林业科学研究, 2016, 29(4): 471-479.
    [8] 安静万友名马宏刘雄芳张秀姣曹毓蓉李正红 . 地涌金莲MlCYP734A6基因的克隆与表达分析. 林业科学研究, 2021, 34(3): 37-45. doi: 10.13275/j.cnki.lykxyj.2021.03.004
    [9] 张恺恺杨立莹丰美静张林凤陈段芬邱德有杨艳芳 . 曼地亚红豆杉NAC基因家族鉴定及表达分析. 林业科学研究, 2022, 35(2): 97-103. doi: 10.13275/j.cnki.lykxyj.2022.02.011
    [10] 赵岩秋周厚君魏凯丽江成宋学勤卢孟柱 . 杨树中Ⅰ类KNOX基因结构、表达与功能分析. 林业科学研究, 2018, 31(4): 118-125. doi: 10.13275/j.cnki.lykxyj.2018.04.017
    [11] 章晶晶郭英华赵树堂卢孟柱 . 杨树PtRRI基因的组织特异性表达模式分析. 林业科学研究, 2018, 31(2): 34-40. doi: 10.13275/j.cnki.lykxyj.2018.02.005
    [12] 朱建峰李万峰杨文华韩素英齐力旺 . 中间锦鸡儿生长发育过程中5个miRNAs及其靶基因的表达模式分析. 林业科学研究, 2013, 26(S1): 45-51.
    [13] 史倩倩周琳李奎王雁 . 云南野生黄牡丹PlbHLH3转录因子基因的克隆与表达. 林业科学研究, 2015, 28(4): 488-496.
    [14] 林琳李健李慧玉穆怀志姜静 . 逆境胁迫下柽柳脂质转运蛋白基因 (ThLTP)的克隆与功能初步分析. 林业科学研究, 2012, 25(4): 492-499.
    [15] 孙化雨娄永峰李利超赵韩生高志民 . 毛竹TIPs基因家族成员组织表达模式研究. 林业科学研究, 2016, 29(4): 521-528.
    [16] 徐向东任逸秋张利李煜王丽娟卢孟柱 . 杨树PIF基因家族成员表达模式研究. 林业科学研究, 2018, 31(2): 19-25. doi: 10.13275/j.cnki.lykxyj.2018.02.003
    [17] 胡梦璇宋学勤刘颖丽赵树堂 . 杨树MYC基因家族成员表达模式研究. 林业科学研究, 2023, 36(3): 32-40. doi: 10.12403/j.1001-1498.20220503
    [18] 陈连庆韩宁林 . 浙江地区的银杏VA菌根真菌. 林业科学研究, 1999, 12(6): 581-584.
    [19] . 广西银杏冰雪灾害调查及治理技术. 林业科学研究, 2009, 22(4): -.
    [20] 徐浩杨克彬朱成磊李英高志民 . 毛竹肉桂酰辅酶A还原酶基因PeCCR功能初步研究. 林业科学研究, 2020, 33(2): 77-84. doi: 10.13275/j.cnki.lykxyj.2020.02.010
  • 加载中
计量
  • 文章访问数:  3580
  • HTML全文浏览量:  222
  • PDF下载量:  1857
  • 被引次数: 0
出版历程

银杏过氧化氢酶基因CAT1的克隆及表达分析

  • 1. 黄冈师范学院生命科学与工程学院,湖北 黄冈 438000
  • 2. 河北农业大学园艺学院, 河北 保定 071001
  • 3. 长江大学园艺园林学院,湖北 荆州 434025
基金项目:  教育部新世纪优秀人才支持计划(NCET-04-0746);湖北省教育厅重大科技项目(Z200627002)和湖北省青年杰出人才基金(2003AB014)

摘要: 利用RACE技术从银杏中克隆到过氧化氢酶基因(GbCAT1)的cDNA全长。进化树分析结果表明:GbCAT1和其他物种的CAT源自于相同的祖先。Southern 杂交显示:GbCAT1属于1个小的多基因家族。实时定量RT-PCR分析表明:GbCAT1在银杏的根、茎、叶和果中都有表达,在叶中的相对表达量最高,其次为果、茎和根。GbCAT1的转录受到ABA、渗透压、紫外、低温和高温胁迫的诱导。水杨酸处理下,GbCAT1相对表达量迅速降低。CAT1基因在逆境条件下的相对表达变化与环境胁迫有关。

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回