中国沙棘（♀）×蒙古沙棘（♂）杂种 F₁ 重要选种
性状表型多样性与选优研究

段爱国¹, 张建国¹*, 罗红梅², 李健雄²

(1. 林木遗传育种国家重点实验室, 中国林业科学研究院林业研究所, 北京 100091；
2. 中国林业科学研究院磴口沙漠林业实验中心, 内蒙古 磴口 015200)

摘要: 基于远缘杂交技术路线, 以中国沙棘优良单株 MK-88-01, HF-88-05 为母本, 俄罗斯栽培种阿列依及蒙古大果沙棘乌兰格木子代优良雄株为父本, 展开了中国沙棘与蒙古沙棘 2 个亚种间杂交育种研究。结果发现: 杂种子代性状分化严重, 棘刺数、百果质量、果实产量等最重要的几项经济指标的遗传分化程度最大。选育出 3 个优良杂种单株, 其树高均显著高于父本, 2 年生枝棘刺数均为 3 个, 与母本中国沙棘相比, 棘刺数大量减少。优良杂种单株百果质量与单株产量分别达 26.33~29.33 g, 2.00~2.50 kg, 比母本中国沙棘分别提高 31.34%~46.30%, 66.67%~108.33%。杂交子代具有单株生长量越大,其果实与种子表型指标就越小的变化规律, 与母本中国沙棘体大果小、父本蒙古沙棘体小果大的表型特征相吻合。

关键词: 沙棘; 杂交育种; 表型变异; 选优

Phenotypic Diversity of Hybrids Progenies of Seabuckthorn and Selection of Superior Genotypes

DUAN Ai-guo¹, ZHANG Jian-guo¹, LUO Hong-mei², LI Jian-xiong²

(1. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
2. Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, Inner Mongolia, China)

Abstract: In order to improve both the economic value and ecological adaptability of seabuckthorn, Chinese Seabuckthorn (Hippophae rhamnoides ssp. sinensis) as female parent was crossed with Russian and Mongolian Seabuckthorn (H. rhamnoides ssp. Mongolica) as male parent. The cross pollination was started in 2002. It was found that the phenotypic variations of hybrids progenies were obvious. The most important economical indices, such as numbers of thorns, 100-berry weight and berry yields, were found having the biggest phenotypic variations extent. Three hybrid individual trees were selected in 2009. Experimental results indicated that the selected 3 hybrids were significantly larger than the male parents in height and fewer thorns than the female parents. The 100-berry weight and berry yields of superior hybrids arrived respectively 26.33 ~ 29.33 g, and 2.00 ~ 2.50 kg, compared with female parent Chinese Seabuckthorn, improved by 31.34% ~ 46.30%, 66.67% ~ 108.33%. The hybrid progenies had an important variation law that the stems, having bigger growth quantities, had smaller berries and seeds, the phenomena were consistent with appearance characteristics of male and female parents.

Key words: seabuckthorn; cross breeding; phenotypic variation; selection

收稿日期: 2011-02-20

基金项目：中国林业科学研究院林业研究所重点项目“沙棘生态经济型优良杂种选育与示范”(ZD200904); 科技部农业科技成果转化资金项目“大果沙棘优良引进品种产业化示范(2009GR24320470)”资助

作者简介: 段爱国, 博士, 副研究员, 主要研究方向: 林木遗传改良与定向培育, 林木生理生态。

*通讯作者: E-mail: zhangjg@forestry.ac.cn.
第1期 段爱国等:中国沙棘(Hippophae rhamnoides L.)×蒙古沙棘(Hippophae rhamnoides L. ssp. sinensis Rousi)杂种F_{1}重要选种性状表型多样性与选优研究

1 材料与方法

1.1 杂交材料

中国沙棘抗逆性强(耐旱、耐高温、耐瘠薄),但果小刺多,经济效益较低,而俄罗斯和蒙古选育出的沙棘优良品种果大无刺,经济效益较高,抗寒性强,但耐旱、耐高温,耐瘠薄性较弱。基于以上品种的特点,为选育适应我国三北地区的生态经济型品种,展开了以中国沙棘和蒙古沙棘杂交组合为母本、父本之间的地理远缘杂交试验。杂交亲本材料中,3 个是基于中国沙棘种源试验、引种试验自己选育出的优良单株。杂交母本 MK-88-01 为从内蒙古克什克腾旗中国沙棘中通过实生选育出的中国沙棘优良雌株,母本 HF-88-05 为中国沙棘优良种源河北丰宁中实生选育出的中国沙棘优良雄株,父本 C II 为从蒙古大果沙棘优良品种乌兰格木中实生选育出的优良雄株,父本阿列依为从俄罗斯引进的目前唯一已推广的优良无刺雄株。

1.2 杂交试验设计

1.3 指标测定

2009 年 10 月对 2 个组合所有保存单株进行了调查,调查生长指标包括株高、地径、冠幅、1 年生枝棘刺数、2 年生枝棘刺数及果实产量等。剪取有代表性的结果枝, 测量杂交组合 F_{1} 代果实经济性状指标,包括百果质量、果实纵径、果实横径、果柄长, 计算果实纵横径比, 每个单株随机测量果实 30 粒, 并测量 30 个叶片, 测定叶长、叶宽, 计算叶长宽比。每个单株均随机选取 30 粒饱满的风干种子, 测量种子长度、宽度、厚度, 称量种子千粒质量, 计算种子长宽比。

2 结果与分析

2.1 不同杂交组合 F_{1} 代表型变异

2.1.1 杂交子代生长适应性表型指标变异规律

生长性状是植物在某一外界环境条件下的直接外在表现,是植物生态适应能力的有效评判指标。表 1 为中国沙棘与蒙古沙棘 2 个亚种间杂交组合 F_{1} 代表型性状变异情况。从表 1 可看出: 中国沙棘亚
种为母本、蒙古沙棘亚种为父本的杂交组合 F1 代生长指标株高、地径、冠幅均存在较大幅度的分化，其均值与母本中国沙棘相近，但据观测，2 个父本的株高、地径、冠幅都分别小于 2 m , 50 mm , 2 m，杂交子代的生长显然优于父本，这表明杂交提高了引进大豆沙棘父本的生长能力。生长指标的分化为筛选适应性强的优良杂代单株提供了理论与物质基础。

2.1.2 杂种子代经济性表型变异规律
棘刺数量的多少是沙棘的一种区域适应性特征，更是沙棘良种的一个重要经济型指标。从表 1 可知：中国沙棘为母本的中蒙杂交子代 1,2 年生枝棘刺数具有相当大的变化范围，其年生枝棘刺数远远大于 2 年生的小。结合图 1 可看出：MK-88-01 × 阿列依、HF-88-05 × C II 2 个组合分别有 42.22% 和 40.00% 的 2 年生棘刺为 1 个或 2 个。MK-88-01 × 阿列依组合子代群体 1,2 年生枝均出现无棘单株现象，棘刺数远低于母本中国沙棘。这一结果表明，与蒙古沙棘进行杂交后，中国沙棘为母本的子代群体棘刺数显著减少，能大大降低中国沙棘果实采收的难度。

表 1 不同杂交组合 F1 代生长、种实性状表型变异情况

<table>
<thead>
<tr>
<th>性状</th>
<th>MK-88-01 × 阿列依</th>
<th>HF-88-05 × C II</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>株高/m</td>
<td>2.70～5.30</td>
<td>3.95</td>
<td>0.63</td>
</tr>
<tr>
<td>地径/mm</td>
<td>41.39～140.13</td>
<td>85.71</td>
<td>21.01</td>
</tr>
<tr>
<td>冠幅/m</td>
<td>1.05～3.50</td>
<td>2.21</td>
<td>0.51</td>
</tr>
<tr>
<td>1 年生枝棘刺数/个</td>
<td>0～5</td>
<td>0.81</td>
<td>1.11</td>
</tr>
<tr>
<td>2 年生枝棘刺数/个</td>
<td>0～9</td>
<td>2.82</td>
<td>1.54</td>
</tr>
<tr>
<td>产量/(kg·株-1)</td>
<td>0.05～4.00</td>
<td>1.49</td>
<td>0.86</td>
</tr>
<tr>
<td>果实纵径/mm</td>
<td>3.89～9.70</td>
<td>5.85</td>
<td>2.00</td>
</tr>
<tr>
<td>果实横径/mm</td>
<td>4.58～8.08</td>
<td>6.24</td>
<td>0.97</td>
</tr>
<tr>
<td>果柄长/cm</td>
<td>0.45～3.60</td>
<td>1.81</td>
<td>0.71</td>
</tr>
<tr>
<td>果实横径倍</td>
<td>0.69～1.50</td>
<td>0.93</td>
<td>0.22</td>
</tr>
<tr>
<td>百果质量/g</td>
<td>5.67～42.67</td>
<td>15.08</td>
<td>9.08</td>
</tr>
<tr>
<td>叶长/cm</td>
<td>3.23～7.63</td>
<td>4.88</td>
<td>0.90</td>
</tr>
<tr>
<td>叶宽/cm</td>
<td>0.54～1.00</td>
<td>0.75</td>
<td>0.18</td>
</tr>
<tr>
<td>叶长宽比</td>
<td>4.70～10.08</td>
<td>6.83</td>
<td>1.44</td>
</tr>
<tr>
<td>种子长度/mm</td>
<td>3.47～6.57</td>
<td>4.78</td>
<td>1.00</td>
</tr>
<tr>
<td>种子宽度/mm</td>
<td>1.85～2.99</td>
<td>2.47</td>
<td>0.30</td>
</tr>
<tr>
<td>种子厚度/mm</td>
<td>1.34～2.11</td>
<td>1.82</td>
<td>0.18</td>
</tr>
<tr>
<td>种子长宽比</td>
<td>1.47～2.55</td>
<td>1.93</td>
<td>0.25</td>
</tr>
<tr>
<td>种子千粒质量/g</td>
<td>5.36～18.69</td>
<td>9.30</td>
<td>3.41</td>
</tr>
</tbody>
</table>

注：*、**分别表示显著、极显著。

果实性状是沙棘最重要的经济指标。从表 1 可知，2 个中蒙杂交组合子代各单株间果实大小指标百果质量、果实纵径、果实横径均产生了明显变异，MK-88-01 × 阿列依与 HF-88-05 × C II 2 个杂交组合百果质量最低值仅为 5.67、7.67 g，而最高值则分别达 42.67、33.33 g。由于中国沙棘百果质量一般为 20 g 左右，表明杂交子代的果实性状指标出现了明显的分化现象，子代果实出现远小于、接近于和远大于母本中国沙棘等 3 种情形。结合图 2 可知：2 个杂交组合单株产量在 0～1.1～2 kg 的单株均占有相当一部分，但 2 个组合均有 50% 的单株产量超过母本中国沙棘的产量(1.20 kg)，MK-88-01 × 阿列依组合有 3 个单株产量达到了 3～4 kg，更远远超过母本中国沙棘产量，可见 2 个杂交组合单株果实产量指标亦具有很大的选择空间。

从果柄长度来看，2 个杂交组合子代具有明显的分离，MK-88-01 × 阿列依与 HF-88-05 × C II 组合分别达 0.45～3.60、1.76～3.67 mm，这表明可以筛选出有利于手工精细化采摘的长果柄杂种无性系。从果形来看，2 个杂交组合子代果形变化较大，按张建国[7]提出的划分标准，2 个杂交组合子代均具有多种形状。结合图 3 可以看出：2 个杂交组合子代果形变化均相当大，分别为 0.05～4.00, 0.50～2.50 kg, 结合图 4 可知，2 个杂交组合单株产量在 0～1.1～2 kg 的单株占有相当一部分，但 2 个组合均有 50% 的单株产量超过母本中国沙棘的产量(1.20 kg)，MK-88-01 × 阿列依组合有 3 个单株产量达到了 3～4 kg，更远远超过母本中国沙棘产量，可见 2 个杂交组合单株果实重量指标亦具有很大的选择空间。
同一果形的单株数均表现为扁圆形 > 圆形 > 卵圆形 > 圆柱形, 且扁圆形为杂种子代主要果实形状。

沙棘叶富含黄酮, 经济利用价值前景广阔。从表1可知: 杂种子代叶片长、宽及长宽比出现明显的变化。

种子是沙棘繁殖的一种重要形式, 也是沙棘经济效益的主要物质基础之一。从表1可知: 杂种子代种子长、宽及长宽比产生巨大的分化。种子千粒质量变异幅度更为明显, MK-88-01 × 阿列依与 HF-88-05 × CⅡ组合分别达 5.36 ~ 18.69、6.09 ~ 15.74 g, 最大值分别为最小值的 3.49、2.58 倍。

由表1、表2可知: 中蒙杂交组合子代各表型指标变异程度有很大的差异。MK-88-01 × 阿列依杂交组合各表型指标变异程度由大至小依次为 1 年生棘刺数、百果质量、果实产量、2 年生棘刺数、果柄长、种子千粒质量、果实纵径、地径、果实纵横径比、冠幅、叶长宽比、种子长度、叶长、叶宽、株高、果实横径、种子长宽比、种子宽度、种子厚度。HF-88-05 × CⅡ杂交组合各表型指标变异程度由大至小依次为 1 年生棘刺数、百果质量、2 年生棘刺数、果实产量、种子千粒质量、果实纵径、果柄长、地径、果实纵横径比、种子长度、果实横径、冠幅、叶长、叶长宽比、株高、种子长宽比、叶宽、种子宽度、种子厚度。可以发现, 19 项表型指标中, 有 9 项指标在 2 个杂交组合中的表型变异程度均较高, 而 1 年生棘刺数、2 年生棘刺数、百果质量、果实产量则是表型变异程度最大的 4 项指标。

生长指标中, 棘刺数与地径的变异程度要高于冠幅和株高; 结实指标中, 百果质量与单株产量的变异程度高于果实纵径和果柄长, 果实纵横径比和果实横径变异程度最小; 叶片指标变异程度总体较小; 种子表型指标中, 种子千粒质量与种子长变异程度明显高于种子宽度、厚度及长宽比。

棘刺数、百果质量、果实产量是沙棘最重要的几项经济指标, 这些指标变异程度最好表现最大, 变幅最广, 表明以中国沙棘亚种为母本的中蒙杂交组合子代具有很高的选种潜力和良好的选优基础。

2.2 杂种 F1 代表型性状相关分析

以 MK-88-01 × 阿列依杂交组合子代群体为基础分析了 F1代 19 个表型性状彼此间的相关关系。由表 2 可知: 株高、地径、冠幅等 3 项生长指标间均极显著相关; 1 年生枝棘刺数与 2 年生枝棘刺数达到极显著相关; 单株果实产量是杂种子代选优的重要性状指标, 相关分析结果表明其与株高呈显著正相关, 而与种子长度及长宽比呈显著负相关, 与其他指标均无显著相关关系, 表明沙棘杂种果实单株产量
与百果质量、棘刺数等重要选种性状具有相对的独立性，选种时须分别考虑。

表 2 MK-88-01 × 阿列依杂交子代群体表型性状相关分析

<table>
<thead>
<tr>
<th>高株/格</th>
<th>表高</th>
<th>地径</th>
<th>冠幅</th>
<th>1年生枝刺数</th>
<th>2年生枝刺数</th>
<th>单株产量</th>
<th>果实横径</th>
<th>果实纵径</th>
<th>果柄长</th>
<th>果实纵横比</th>
<th>百果质量</th>
<th>叶长</th>
<th>叶宽</th>
<th>叶长宽比</th>
<th>种长</th>
<th>种宽</th>
<th>种厚</th>
<th>种子长宽比</th>
<th>种子千粒质量</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4.30</td>
<td>-6.52</td>
<td>3.00</td>
<td>-85.00</td>
<td>2.50</td>
<td>108.33%</td>
<td>29.33</td>
<td>46.28%</td>
<td>46.28</td>
<td>3.00</td>
<td>2.00</td>
<td>2.05</td>
<td>2.50</td>
<td>108.33%</td>
<td>29.33</td>
<td>46.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>2.80</td>
<td>-39.13</td>
<td>3.00</td>
<td>-85.00</td>
<td>2.25</td>
<td>87.50%</td>
<td>26.33</td>
<td>31.32</td>
<td>46.28</td>
<td>3.00</td>
<td>2.00</td>
<td>2.05</td>
<td>2.50</td>
<td>108.33%</td>
<td>29.33</td>
<td>46.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>3.00</td>
<td>-34.78</td>
<td>3.00</td>
<td>-85.00</td>
<td>2.00</td>
<td>66.67%</td>
<td>27.33</td>
<td>36.31</td>
<td>46.28</td>
<td>3.00</td>
<td>2.00</td>
<td>2.05</td>
<td>2.50</td>
<td>108.33%</td>
<td>29.33</td>
<td>46.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>母本</td>
<td>4.60</td>
<td>20.00</td>
<td>1.20</td>
<td>20.05</td>
<td></td>
</tr>
<tr>
<td>父本</td>
<td>1.69</td>
<td>2.00</td>
<td>1.20</td>
<td></td>
</tr>
</tbody>
</table>

注: 表中百分比指优株相对母本的变化比例。
3 结论与讨论

沙棘杂种子代性状存在严重的分化。通过对两组以中国沙棘亚种为母本、蒙古沙棘亚种为父本的杂交组合子代群体性状分化的研究，发现杂种子代生长量、棘刺数、果实、种子及叶片等指标的19个表型性状均存在不同程度的分化，且不同表型性状分化程度具有很大差异，这一结果与之前展开的以蒙古沙棘亚种为母本的中蒙沙棘杂交子代群体具有性状严重分化的一般规律。杂种子代棘刺数、百果质量、果实产量等沙棘最重要的几项经济指标的分化程度最大，表明以中国沙棘亚种为母本的中蒙沙棘杂交F1代群体具有较大的选优空间。

以往对中国沙棘、蒙古沙棘、中亚沙棘3个亚种间的研究所表明，中国沙棘亚种与蒙古沙棘亚种间具有显著的杂种优势[8-10]。本研究结果表明，通过以中国沙棘为母本的中蒙沙棘杂交，降低了母本的棘刺数，子代群体棘刺平均数远低于母本中国沙棘，杂种子代百果质量、果实产量等沙棘最重要的几项经济指标的分化程度最大，表明以中国沙棘亚种为母本的中蒙沙棘杂交F1代群体具有较大的选优潜力。

沙棘杂种子代性状的分化及杂种优势的存在构成了沙棘优良杂种选育的理论与物质基础。根据沙棘杂种选育标准[7]，从2个杂交组合子代群体中选育出3个优良单株，3个优良单株的平均高度显著高于父本，2年生枝棘刺数均为3个，与母本中国沙棘相比，棘刺数大量减少。优良单株百果质量与单株产量分别为26.33～29.33 g, 2.0～2.5 kg, 比母本中国沙棘分别提高31.32%～46.28%、66.67%～108.33%。结合以蒙古沙棘亚种乌兰格木、丘依斯克为母本的中蒙沙棘杂交子代的5个优良单株相关性状分析[8,10]，可以看出，优良单株的生长量、棘刺数、百果质量及果实产量等重要性状均介于父母本之间；与蒙古沙棘或蒙古沙棘任一亚种作为母本无关，不同的是，母本为中国沙棘亚种时，改良性状以棘刺数、百果质量、单株产量等经济性状为主，杂种优良经济性状明显高于母本，而母本为蒙古沙棘亚种时，改良性状以树高生长量、冠幅大小等生长性状为主，杂种优良经济性状得到提高。同时，

生态经济型沙棘优良杂种选育是一个既重视生长性状如株高、地径、冠幅等生态适应性指标选育，又重视经济性状如棘刺数、百果质量、单株产量等重要经济指标选育的多目标、多性状综合选择工作。本实验以2组中蒙沙棘杂交组合子代群体为研究对象，初步分析了以中国沙棘为母本的中蒙沙棘杂种子代群体的表型多样性，可为生态经济型沙棘新品种的选育路线提供参考；而进一步开展中国沙棘与包括俄罗斯优良雄株品种阿列依在内的多个父本的杂交试验，深入评价沙棘杂种各性状遗传变异规律，并结合多性状指数选择展开研究，可作为今后筛选生态经济型沙棘优良新品种的重要途径。

参考文献：

可以看到, 无论是棘刺数、百果质量, 还是单株产量, 就单一性状而言, 所选优株均不是最高, 但却为重要经济性状综合表现优异的单株。