• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自然降雨对高寒沙地中间锦鸡儿人工林土壤呼吸的影响

戴捷 贾志清 李清雪 何凌仙子 杨凯悦 高娅

引用本文:
Citation:

自然降雨对高寒沙地中间锦鸡儿人工林土壤呼吸的影响

    通讯作者: 李清雪, jiazq369@caf.ac.cn
  • 中图分类号: S154.1

Effects of Natural Rainfall on Soil Respiration of Caragana Plantation in Alpine Sandland

    Corresponding author: LI Qing-xue, jiazq369@caf.ac.cn ;
  • CLC number: S154.1

  • 摘要: 目的 本研究以青海共和盆地中间锦鸡儿人工林为研究对象,分析其土壤呼吸与环境因子的关系及自然降雨对土壤呼吸和环境因子的影响机制,以期为高寒沙区人工林土壤碳通量估算和碳循环研究提供依据和理论参考。 方法 于2018年7月,在观测样内地开展30 d的连续定位观测试验,对其土壤呼吸速率和环境因子变化及自然降雨过程进行定量分析研究。 结果 (1)土壤呼吸受太阳总辐射、空气温度、土壤温度和土壤含水量等环境因子影响,其中,太阳总辐射影响较直接;(2)无降雨日土壤呼吸主要受表层(10 cm)土壤温湿度影响,降雨过程中主要受深层(150 cm)土壤温湿度影响。累计降雨量大于0.8 mm的自然降雨对土壤呼吸日均值有抑制作用,且激发效应通常出现在降雨结束次日,约持续3 d;(3)大于0.07 mm的自然降雨发生即抑制土壤呼吸速率,其在累计降雨量达10.44 mm、降雨时长达3~4 h时抑制率最高;(4)自然降雨可使Q10值短期升高。 结论 研究区土壤呼吸主要源于植物根系自养呼吸,自然降雨过程对其具有显著抑制作用,并在降雨结束次日出现激发效应;同时,自然降雨可使Q10值升高。
  • 图 1  7月25-30日土壤呼吸和环境因子日变化

    Figure 1.  Diurnal changes in soil respiration and environmental factors from July 25 to July 30

    图 2  7月土壤呼吸与环境因子日变化

    Figure 2.  Diurnal changes in soil respiration and environmental factors from July

    图 3  累计降雨量和降雨强度对土壤呼吸速率变化率的影响

    Figure 3.  Effect of accumulated rainfall and rainfall intensity on soil respiration rate of change

    表 1  环境因子与土壤呼吸速率的相关性

    Table 1.  Correlation between environmental factors and soil respiration rate

    项目
    Item
    空气温度
    TA
    土壤温度(10 cm)
    TS10
    土壤含水量(10 cm)
    VWC10
    太阳总辐射
    SR
    土壤呼吸速率
    RS
    空气温度 TA     1
    土壤温度(10 cm) TS10 0.88** 1
    土壤含水量(10 cm) VWC10 −0.34** −0.38** 1
    太阳总辐射 SR 0.66** 0.37** −0.09** 1
    土壤呼吸速率 RS 0.74** 0.66** −0.62** 0.66** 1
      注:**表示在0.01级别(双尾)相关性显著;数值为Pearson相关系数r值。
      Notes: ** indicates a significant correlation at level 0.01; and the value is the r of Pearson's correlation coefficient.
    下载: 导出CSV

    表 2  土壤呼吸速率和环境因子对降雨时长的响应

    Table 2.  Response of soil respiration rate and environmental factors to rainfall time

    降雨时长
    Rainfall time/h
    土壤呼吸速率变化率
    RS rate of change/%
    空气温度变化率
    TA rate of change/%
    150 cm土壤温度变化率
    TS150 rate of change/%
    150 cm土壤含水量变化率
    VWC150 rate of change/%
    0~1 −5.18 −3.70 0.13 0.00
    1~2 −40.65 −18.06 0.13 0.00
    2~3 −56.03 −22.11 0.00 0.24
    3~4 −65.30 −23.34 0.13 0.47
    4~8 −50.28 −23.78 0.27 0.48
    8~12 −42.51 −25.26 0.32 0.57
      注:变化率=(降雨后−降雨前)/降雨前×100%
      Note:rate of change=(after rain−before rain)/before rain×100%
    下载: 导出CSV

    表 3  土壤呼吸速率和环境因子对降雨量的响应

    Table 3.  Response of soil respiration rate and environmental factors to rainfall

    降雨量
    Rainfall/mm
    土壤呼吸速率变化率
    RS rate of change/%
    空气温度变化率
    TA rate of change/%
    150 cm土壤温度变化率
    TS150 rate of change/%
    150 cm土壤含水量变化率
    VWC150 rate of change/%
    0~1 −12.96 −11.58 0.24 0.00
    1~2 −18.76 −23.97 0.32 0.57
    2~5 −50.44 −17.92 0.43 0.77
    5~8 −85.49 −16.85 0.00 0.30
    8~12 −87.42 −19.15 0.00 0.27
    12~16 −78.17 −20.42 0.00 0.00
    16~20 −66.67 −17.99 0.00 0.00
    下载: 导出CSV

    表 4  土壤呼吸温度敏感性对降雨干扰的响应

    Table 4.  Response of the Q10 to rainfall disturbance

    干扰因素
    Interference factor
    拟合因子
    Fit factor
    拟合方程
    Fitted equation
    拟合度
    R2
    温度敏感系数
    Q10
    无自然降雨日
    Non_rainy day
    TS10 RS = 0.73e0.035T 0.46 1.42
    TS90 RS = 0.006e0.031T 0.34 1.37
    TS120 RS = 0.002e0.042T 0.33 1.53
    TS150 RS = 0.004e0.04T 0.37 1.50
    自然降雨日
    Rainy day
    TS10 RS = 0.243e0.073T 0.47 2.07
    TS90 RS = e0.069T 0.31 1.99
    TS120 RS = e0.08T 0.36 2.23
    TS150 RS = e0.077T 0.42 2.17
    下载: 导出CSV
  • [1]

    Chiara B, Laura Z, Dario S,<italic> et al</italic>. Soil organic matter dynamics and losses in manured maize-based forage systems[J]. European J of Agornomy, 2009, 30(3): 177-186. doi: 10.1016/j.eja.2008.09.006
    [2]

    Mirco R, Alessandor C. Spatial variability and optimal sampling strategy if soil respiration[J]. Forest Ecology and Management, 2008, 255(1): 106-112. doi: 10.1016/j.foreco.2007.08.025
    [3] 王 一, 刘彦春, 刘世荣, 等. 模拟气候变暖和林内穿透雨减少对干旱年暖温带锐齿栎林土壤呼吸的影响[J]. 林业科学研究, 2016, 29(5):698-704. doi: 10.3969/j.issn.1001-1498.2016.05.011

    [4]

    Roderick M L, Farquhar G D, Berry S L,<italic> et al</italic>. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation[J]. Oecologia, 2001, 129(1): 21-30. doi: 10.1007/s004420100760
    [5]

    Jiang H, Deng Q, Zhou G,<italic> et al</italic>. Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China[J]. Biogeosciences, 2013, 10(6): 3963-3982. doi: 10.5194/bg-10-3963-2013
    [6]

    Zhang L, Xie Z, Zhao R,<italic> et al</italic>. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland[J]. Applied Soil Ecology, 2018, 127: 87-95. doi: 10.1016/j.apsoil.2018.02.005
    [7]

    IPCC. Working group I contribution of to the IPCC fifth assessment report, Climate Change in 2013: The Physical Science Basis. Cambridge[M]. UK: Cambridge University Press, 2013.
    [8]

    Austin A T, Yahdjian L, Stark J M,<italic> et al</italic>. Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J]. Oecologia, 2004, 141(2): 221-235. doi: 10.1007/s00442-004-1519-1
    [9]

    Waring B G, Powers J S. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests[J]. Environmental Research Letters, 2016, 11(10): 1-9.
    [10]

    Wang L, Manzoni S, Ravi S,<italic> et al</italic>. Dynamic interactions of ecohydrological and biogeochemical processes in water limited systems[J]. Ecosphere, 2015, 6(8): 133. doi: 10.1890/ES15-00122.1
    [11]

    Rey A, Oyonarte C, Morán-López T,<italic> et al</italic>. Changes in soil moisture predict soil carbon losses upon rewetting in a perennial semiarid steppe in SE Spain[J]. Geoderma, 2017, 287: 135-146. doi: 10.1016/j.geoderma.2016.06.025
    [12] 颜学佳, 魏江生, 周 梅, 等. 兴安落叶松林土壤呼吸及组分的变化特征[J]. 生态环境学报, 2013,22(6):948-954. doi: 10.3969/j.issn.1674-5906.2013.06.007

    [13] 董丽媛, 武传胜, 高建梅, 等. 模拟降雨对西双版纳热带次生林和橡胶林土壤呼吸的影响[J]. 生态学杂志, 2012, 31(8):1887-1892.

    [14] 刘合满, 曹丽花, 马和平. 土壤呼吸日动态特征及其与大气温度、湿度的响应[J]. 水土保持学报, 2013, 27(1):193-196.

    [15] 王 旭, 闫玉春, 闫瑞瑞, 等. 降雨对草地土壤呼吸季节变异性的影响[J]. 生态学报, 2013, 33(18):5631-5635.

    [16] 高 翔, 郝卫平, 顾峰雪, 等. 降雨对旱作春玉米农田土壤呼吸动态的影响[J]. 生态学报, 2012, 32(24):7883-7893.

    [17] 李清雪, 朱雅娟, 贾志清, 等. 沙丘不同部位中间锦鸡儿人工林土壤养分特性及植物群落特征[J]. 林业科学研究, 2014, 27(5):677-682.

    [18] 李少华, 王学全, 高 琪, 等. 植被恢复对高寒沙区土壤性质的影响[J]. 林业科学研究, 2016, 29(4):553-559. doi: 10.3969/j.issn.1001-1498.2016.04.013

    [19] 赵世伟, 刘娜娜, 苏 静, 等. 黄土高原水土保持措施对侵蚀土壤发育的效应[J]. 中国水土保持科学, 2006, 4(6):5-12. doi: 10.3969/j.issn.1672-3007.2006.06.002

    [20]

    Cable J M, Ogle K, Lucas R W,<italic> et al</italic>. The temperature responses of soil respiration in deserts: a seven desert synthesis[J]. Biogeochemistry, 2011, 103(1/2/3): 71.
    [21] 张登山, 高尚玉, 石蒙沂, 等. 青海高原土地沙漠化及其防治[M]. 北京: 科学出版社, 2009: 6-40.

    [22]

    Luo Y Q, Wan S Q, Hui D F,<italic> et al</italic>. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856): 622-625. doi: 10.1038/35098065
    [23]

    Fang C, Moncrieff J B. The dependence of soil CO<sub>2</sub> efflux on temperature[J]. Soil Biology & Biochemistry, 2001, 33(2): 155-165.
    [24]

    Birch H F. The effect of soil drying on humus decomposition and nitrogen availability[J]. Plant and Soil, 1958, 10: 9-31. doi: 10.1007/BF01343734
    [25] 解欢欢, 马文瑛, 赵传燕, 等. 祁连山亚高山草地土壤呼吸和生态系统呼吸对降雨的响应[J]. 生态学杂志, 2016, 35(11):2875-2882.

    [26] 李会杰, 饶良懿, 宋丹丹, 等. 不同降雨处理对北京西部山区油松林土壤呼吸的影响[J]. 灌溉排水学报, 2014, 33(1):79-82, 86.

    [27] 金冠一, 赵秀海, 康峰峰, 等. 太岳山油松人工林土壤呼吸对强降雨的响应[J]. 生态学报, 2013, 33(6):1832-1841.

    [28]

    Nielsen U N, Ball B A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems[J]. Global Change Biology, 2015, 21(4): 1407-1421. doi: 10.1111/gcb.12789
    [29]

    Miller A E, Schimel J P, Meixner T,<italic> et al</italic>. Episodic rewetting enhances carbon and nitrogen release from chaparral soils[J]. Soil Biology and Biochemistry, 2005, 37(12): 2195-2204. doi: 10.1016/j.soilbio.2005.03.021
    [30]

    Jin V L, Haney R L, Fay P A,<italic> et al</italic>. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO<sub>2</sub>-induced changes in litter quality[J]. Soil Biology & Biochemistry, 2013, 58: 172-180.
    [31]

    Kim D G, Vargas R, Bondlamberty B,<italic> et al</italic>. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research[J]. Biogeosciences, 2012, 9(7): 2459-2483. doi: 10.5194/bg-9-2459-2012
    [32] 陈 亮, 孙宝玉, 韩广轩, 等. 降雨量增减对黄河三角洲滨海湿地土壤呼吸和芦苇光合特性的影响[J]. 应用生态学报, 2017, 28(9):2794-2804.

    [33]

    Bouma T J, Bryla D R. On the assessment of root and soil respiration for soils of different textures:Interactions with soil moisture contents and soil CO<sub>2</sub> concentrations[J]. Plant and Soil, 2000, 227(1/2): 15-221.
    [34]

    McIntyre R E, Adams M A, Ford D J,<italic> et al</italic>. Rewetting and litter addition influence mineralisation and microbial communities in soils from a semi-arid intermittent stream[J]. Soil Biology & Biochemistry, 2009, 41(1): 92-101.
    [35]

    Wang Y, Wang Z L, Wang H,<italic> et al</italic>. Rainfall pulse primarily drives litterfall respiration and its contribution to soil respiration in a young exotic pine plantation in subtropical China[J]. Soil Science Society of America Journal, 2012, 42(4): 657-666.
    [36]

    Lee X, Wu H J, Sigler J,<italic> et al</italic>. Rapid and transient response of soil respiration to rain[J]. Global Change Biology, 2015, 10(6): 1017-1026.
    [37]

    Huxman T E, Snyder K A, Tissue D,<italic> et al</italic>. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems[J]. Oecologia, 2004, 141(2): 254-268. doi: 10.1007/s00442-004-1682-4
    [38] 张远东, 庞 瑞, 顾峰雪, 等. 西南高山地区土壤异养呼吸时空动态[J]. 生态学报, 2013, 33(16):5047-5057.

    [39]

    RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44(2): 81-99. doi: 10.3402/tellusb.v44i2.15428
    [40]

    XU M, QI Y. Soil surface CO<sub>2</sub> efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California[J]. Global Change Biology, 2001, 7(6): 667-677. doi: 10.1046/j.1354-1013.2001.00435.x
    [41]

    Chapin F S, Matson P A, Mooney H A. Principles of terrestrial ecosystem[M]. New York: Springer New York, 2002.
    [42] 李思思, 贺康宁, 田 赟. 青海高寒区5种典型林分土壤呼吸季节变化及其影响因素[J]. 北京林业大学学报, 2016, 38(10):95-103.

    [43]

    Tang J W, Baldocchi D D, Xu L K. Tree photosynthesis modulates soil respiration on a diurnal time scale[J]. Global Change Biology, 2005, 11(8): 1298-1304. doi: 10.1111/j.1365-2486.2005.00978.x
    [44] 石 坤, 贾志清, 张洪江, 等. 青海共和盆地典型固沙植物根系分布特征[J]. 中国水土保持科学, 2016, 14(6):78-85.

    [45]

    Gao R, Tang Y P, Yang Y S,<italic> et al</italic>. Q<sub>10</sub> values of soil respiration and its affecting factors for Chinese fir plantation and paddy field[J]. Journal of Subtropical Resources and Environment, 2007, 4: 9-14.
    [46]

    Jassal R S, Black T A, Novak M D,<italic> et al</italic>. Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand[J]. Global Change Biology, 2008, 14(6): 1305-1318. doi: 10.1111/j.1365-2486.2008.01573.x
    [47] 任艳林, 杜恩在. 降水变化对樟子松人工林土壤呼吸速率及其表观温度敏感性Q<sub>10</sub>的影响[J]. 北京大学学报: 自然科学版, 2012, 48(6):933-941.

    [48] 刘彦春, 尚 晴, 王 磊, 等. 气候过渡带锐齿栎林土壤呼吸对降雨改变的响应[J]. 生态学报, 2016, 36(24):8054-8061.

    [49] 王 超, 杨智杰, 陈光水, 等. 土壤垂直剖面的CO<sub>2</sub>通量研究[J]. 亚热带资源与环境学报, 2010, 5(4):85-92. doi: 10.3969/j.issn.1673-7105.2010.04.013

    [50] 涂 钢, 刘辉志, 董文杰. 东北半干旱区退化草地土壤温度的日、季变化特征[J]. 高原气象, 2008, 27(4):741-748.

    [51]

    Niu S L, Li Z X, Xia J Y,<italic> et al</italic>. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China[J]. Environmental and Experimental Botany, 2008, 63(1-3): 91-101. doi: 10.1016/j.envexpbot.2007.10.016
  • [1] 王鹤松张劲松孟平高峻贾长荣 . 华北山区非主要生长季典型人工林土壤呼吸变化特征. 林业科学研究, 2007, 20(6): 820-825.
    [2] 黄雪蔓刘世荣尤业明 . 第二代桉树人工纯林和混交林土壤呼吸及其组分研究. 林业科学研究, 2014, 27(5): 575-582.
    [3] 李清雪贾志清何凌仙子赵雪彬羊秀本 . 高寒沙地不同林龄中间锦鸡儿主要养分元素的分配及循环特征. 林业科学研究, 2023, 36(3): 119-128. doi: 10.12403/j.1001-1498.20220528
    [4] 昝志曼刘彦春刘银占轩娟赵威 . 极端降雪对北亚热带-暖温带气候过渡带人工林土壤呼吸的影响. 林业科学研究, 2020, 33(2): 27-34. doi: 10.13275/j.cnki.lykxyj.2020.02.004
    [5] 马姜明李昆 . 元谋干热河谷人工林的土壤养分效应及其评价. 林业科学研究, 2006, 19(4): 467-471.
    [6] 孙启武杨承栋焦如珍 . 连栽杉木人工林土壤肥力变化的主分量分析. 林业科学研究, 2003, 16(6): 689-693.
    [7] 何佩云丁贵杰谌红辉 . 连栽马尾松人工林土壤肥力比较研究. 林业科学研究, 2011, 24(3): 357-362.
    [8] 李帅锋苏建荣刘万德郎学东黄小波贾呈鑫卓童清唐红燕 . 思茅松人工林土壤有机碳和氮储量变化. 林业科学研究, 2015, 28(6): 810-817.
    [9] 邓东周范志平王红孙学凯高俊刚曾德慧张新厚 . 土壤水分对土壤呼吸的影响. 林业科学研究, 2009, 22(5): 722-727.
    [10] 邓娇娇朱文旭张岩殷有周永斌 . 辽西北风沙区不同人工林土壤真菌群落结构及功能特征. 林业科学研究, 2020, 33(1): 44-54. doi: 10.13275/j.cnki.lykxyj.2020.01.006
    [11] 简尊吉倪妍妍徐瑾曾立雄雷蕾朱建华肖文发 . 马尾松人工林土壤碳氮磷生态化学计量学特征的纬度变化. 林业科学研究, 2022, 35(2): 1-8. doi: 10.13275/j.cnki.lykxyj.2022.02.001
    [12] 胡琛贺云龙黄金莲雷静品崔鸿侠唐万鹏马国飞 . 神农架4种典型针叶人工林土壤酶活性及其生态化学计量特征. 林业科学研究, 2020, 33(4): 143-150. doi: 10.13275/j.cnki.lykxyj.2020.04.018
    [13] 覃鑫浩梁艳陈超凡覃林 . 南亚热带不同树种人工林对土壤细菌群落多样性的影响. 林业科学研究, 2021, 34(4): 120-127. doi: 10.13275/j.cnki.lykxyj.2021.04.014
    [14] 丁波丁贵杰赵熙州杨永彰 . 间伐对杉木人工林土壤酶活性及微生物的影响. 林业科学研究, 2017, 30(6): 1059-1065. doi: 10.13275/j.cnki.lykxyj.2017.06.025
    [15] 唐晓鹿范少辉漆良华刘广路官凤英杜满义许庆标 . 采伐对幕布山区毛竹林土壤呼吸的影响. 林业科学研究, 2013, 26(1): 52-57.
    [16] 袁星明朱宁华郭耆周光益蒙敏燕吴尚勇杨乐苏 . 南亚热带不同人工林对土壤理化性质的影响及土壤质量评价. 林业科学研究, 2022, 35(3): 112-122. doi: 10.13275/j.cnki.lykxyj.2022.03.013
    [17] 王宏星孙晓梅陈东升沈亚洲马建伟 . 甘肃小陇山日本落叶松人工林不同发育阶段土壤理化性质的变化. 林业科学研究, 2012, 25(3): 294-301.
    [18] 李昆张昌顺马姜明郑志新 . 元谋干热河谷不同人工林土壤肥力比较研究. 林业科学研究, 2006, 19(5): 574-579.
    [19] 刘博奇牟长城邢亚娟王庆贵 . 模拟氮沉降对云冷杉红松林土壤呼吸的影响. 林业科学研究, 2012, 25(6): 767-772.
    [20] 李昆陈玉德 . 元谋干热河谷人工林地的水分输入与土壤水分研究*. 林业科学研究, 1995, 8(6): 651-657.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  3619
  • HTML全文浏览量:  1754
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-19
  • 录用日期:  2020-02-27
  • 刊出日期:  2020-08-01

自然降雨对高寒沙地中间锦鸡儿人工林土壤呼吸的影响

    通讯作者: 李清雪, jiazq369@caf.ac.cn
  • 1. 中国林业科学研究院荒漠化研究所,北京 100091
  • 2. 中国林业科学研究院林业研究所,北京 100091
  • 3. 青海共和荒漠生态系统定位观测研究站,青海 共和 813005

摘要:  目的 本研究以青海共和盆地中间锦鸡儿人工林为研究对象,分析其土壤呼吸与环境因子的关系及自然降雨对土壤呼吸和环境因子的影响机制,以期为高寒沙区人工林土壤碳通量估算和碳循环研究提供依据和理论参考。 方法 于2018年7月,在观测样内地开展30 d的连续定位观测试验,对其土壤呼吸速率和环境因子变化及自然降雨过程进行定量分析研究。 结果 (1)土壤呼吸受太阳总辐射、空气温度、土壤温度和土壤含水量等环境因子影响,其中,太阳总辐射影响较直接;(2)无降雨日土壤呼吸主要受表层(10 cm)土壤温湿度影响,降雨过程中主要受深层(150 cm)土壤温湿度影响。累计降雨量大于0.8 mm的自然降雨对土壤呼吸日均值有抑制作用,且激发效应通常出现在降雨结束次日,约持续3 d;(3)大于0.07 mm的自然降雨发生即抑制土壤呼吸速率,其在累计降雨量达10.44 mm、降雨时长达3~4 h时抑制率最高;(4)自然降雨可使Q10值短期升高。 结论 研究区土壤呼吸主要源于植物根系自养呼吸,自然降雨过程对其具有显著抑制作用,并在降雨结束次日出现激发效应;同时,自然降雨可使Q10值升高。

English Abstract

  • 土壤是陆地表层系统中最大的碳储库[1],土壤表面碳释放是陆地生态系统中第二大碳通量[2]。一般认为,土壤温湿度是调控土壤呼吸的两个重要环境因子[3];也有研究发现,制约草原生态系统土壤呼吸的主要因子是太阳辐射[4];而降雨引起的干湿交替则直接影响土壤呼吸并通过干扰太阳辐射、土壤水分和土壤温度等间接途径影响土壤呼吸动态[5-6]。据气候模型预测显示,未来全球降雨格局将持续变化,极端干旱和降雨不断升高[7];但降雨对土壤呼吸的影响具有较大的不确定性,其引发的干湿交替过程将显著影响土壤呼吸时空特征、碳通量估算[8]与干旱和半干旱区土壤碳释放过程[9-11]

    现阶段我国研究土壤呼吸对降雨的响应主要集中在森林生态系统[12-13]、草原生态系统[14-15]和农田生态系统[16],对广泛分布于我国西北部干旱与半干旱区的荒漠生态系统的研究鲜有报道,其中,青藏高原的共和盆地是受土地沙漠化影响最严重的区域之一,植被重建是该区域防治土地沙漠化的有效措施[17]。有研究表明,植被恢复可以显著改良土壤理化性质,加速沙成壤进程[18],但水土保持措施也会引起微地形、土壤结构和土壤水分的改变,进而影响土壤呼吸[19]。因此,本研究以共和盆地2013年栽植的中间锦鸡儿(Caragana intermedia Kuang et H. C. Fu)人工防风固沙林为例,通过对比降雨前后土壤呼吸与各环境因子的变化,分析自然降雨对土壤呼吸的干扰途径和影响机制,为完善干旱与半干旱区人工林的碳循环估算模型提供参考[20]

    • 本研究在国家林业和草原局青海共和荒漠生态系统定位研究站开展。研究区位于青藏高原东北部,具有明显的高原大陆性气候特征,年均气温2.4℃,降水量246.3 mm,潜在蒸发量1 716.7 mm,无霜期平均91 d。研究区以人工林为主,常见植被有小叶杨(Populus simonii Carr)、中间锦鸡儿、柠条锦鸡儿(Caragana korshinskii Kom)、乌柳(Salix cheilophila Schneid)和北沙柳(Salix psammophila C. Wang et Ch. Y. Yang)等;天然植被主要有芨芨草(Achnatherum splendens Nevski)、川青锦鸡儿(Caragana tibetica Kom)灌丛和针茅(Stipa spp.)等[21]。地带性土壤为栗钙土和棕钙土,非地带性土壤是风沙土、盐土和草甸土等,下垫面主要由固定、半固定沙丘及流动沙丘组成。观测样地为半固定沙丘,有麦格沙障,样地面积50 m×50 m,平均海拔2 878 m;2013年直播造林,株行距1 m×1 m,平均株高0.8 m,平均冠幅1.1 m×1.05 m,平均地径6.2 mm。

    • 于2018年7月1日至7月30日在生态站的中间锦鸡儿长期观测样地内开展观测。样地土壤呼吸采用3台ACE土壤呼吸自动监测仪(ADC公司,英国)进行连续监测,分别沿样地对角线等距布设,安装前预先清理地表枯落物。该测量系统由封闭透明的呼吸室(面积S=866 cm2,高H=3 cm)和红外气体分析仪组成,采样间隔1 h;土壤温度和土壤含水量数据由布设于样地中心的土壤温湿度传感器5TM(METER公司,美国)获取,采样区间为0~150 cm垂直土壤层(深度梯度:10、20、30、40、60、90、120、150 cm),采样间隔1 h;太阳总辐射、空气温度和降雨量等大气环境因子数据由样地内Dynamet-1k科研级气象站(Dynamax公司,美国)同步获取。

      土壤呼吸速率和土壤温度间的关系采用指数模型拟合[22]

      RS=aebT

      式中:RS(μmol·m−2·s−1)为土壤呼吸速率,T(℃)为土壤温度,a为0℃时土壤呼吸速率,b为温度反应系数。

      Q10代表土壤呼吸温度敏感性,即温度每升高10℃土壤呼吸增加的倍数,本文采用Fang等[23]的计算方法,公式如下:

      Q10=e10b

    • 本文利用Microsoft Office Excel 2016软件对土壤呼吸速率、太阳总辐射、空气温度和降雨量等数据进行处理。统计分析在SPSS 24.0软件中完成,采用Pearson相关性分析(双尾)研究自然降雨和土壤呼吸速率及各环境因子间关系;采用回归分析研究降雨和土壤呼吸速率变化率的关系;建立土壤温度和土壤呼吸速率的指数方程,估算Q10值。使用Microsoft Office Excel 2016软件绘图。

    • 选取观测月内无降雨发生的15 d数据,对比不同深度土壤温度(TS)和土壤含水量(VWC)与土壤呼吸速率(RS)的相关性,发现10 cm深度土壤的TS10VWC10RS相关性较强(P<0.01)。分别对RS、空气温度(TA)、TS10VWC10和太阳总辐射(SR)进行相关性检验,结果(表1)表明:RS与各环境因子均表现为显著强相关(P<0.01,|r|>0.6),表明各环境因子均对RS具有显著影响。各环境因子与TA相关性强弱顺序为:TS10>SR>VWC10;与TS10顺序为:TA>VWC10>SR;与VWC10顺序为:TS10>TA>SR;与SR顺序为:TA>TS10>VWC10,即各环境因子间呈SRTATS10VWC10彼此相关性最强趋势,其可能存在依次相互作用关系。

      表 1  环境因子与土壤呼吸速率的相关性

      Table 1.  Correlation between environmental factors and soil respiration rate

      项目
      Item
      空气温度
      TA
      土壤温度(10 cm)
      TS10
      土壤含水量(10 cm)
      VWC10
      太阳总辐射
      SR
      土壤呼吸速率
      RS
      空气温度 TA     1
      土壤温度(10 cm) TS10 0.88** 1
      土壤含水量(10 cm) VWC10 −0.34** −0.38** 1
      太阳总辐射 SR 0.66** 0.37** −0.09** 1
      土壤呼吸速率 RS 0.74** 0.66** −0.62** 0.66** 1
        注:**表示在0.01级别(双尾)相关性显著;数值为Pearson相关系数r值。
        Notes: ** indicates a significant correlation at level 0.01; and the value is the r of Pearson's correlation coefficient.

      选取7月25日至7月30日连续无降雨发生的6 d分析RS和各环境因子间相互作用的关系,图1表明:每日各环境因子峰值对应的时间顺序呈SR-TA-TS10-VWC10分布,结合各环境因子间的相关性分析,SR-TA-TS10-VWC10间可能表现为能量传递关系,即SR引起TA波动,进而影响TS10,最终引起VWC10变化,其中,RSSR峰值对应的时间最接近,均为每日13:00—15::00,表明SR是最先影响RS变化的环境因子。

      图  1  7月25-30日土壤呼吸和环境因子日变化

      Figure 1.  Diurnal changes in soil respiration and environmental factors from July 25 to July 30

    • 检验观测月内单日累计降雨量和不同深度TSVWC的相关性,发现10 cm深度土壤的TSVWC与降雨量相关性较强(P<0.01)。对比降雨量与RS和各环境因子日均值的关系(图2),自然降雨与RS呈显著负相关(P<0.01),且单日累计降雨量大于0.8 mm时RS均明显受到抑制。降雨结束次日,RS迅速回升,该效应约可持续3 d,且累计降雨量越高RS回升越高。如7月3日发生了该月最大单日降雨,对应出现了当月最小RS日均值0.297 μmol·m−2·s−1,次日RS迅速增长了186%,该效应持续至7月6日,累计增长397%。

      图  2  7月土壤呼吸与环境因子日变化

      Figure 2.  Diurnal changes in soil respiration and environmental factors from July

      TA及其离散程度都低于TS10S2空气=5.74,S2土壤=14.69),自然降雨与二者均呈显著负相关(P<0.01),且单日累计降雨量大于1.4 mm可以明显抑制TATS10。自然降雨与VWC10呈显著正相关(P<0.01),单日累计降雨量大于2.8 mm可以明显促进VWC10升高;自然降雨与SR呈显著负相关关系(P<0.01),单日累计降雨量大于0.6 mm时SR明显受到抑制。对比自然降雨与RS和各环境因子间Pearson系数,其相关性表现为:SR(−0.72)>RS(−0.70)>TA(−0.54)>TS10(−0.52)>VWC10(0.41),表明SR对自然降雨的敏感度最高,且大于RSVWC10最低。

    • 对观测月发生的15次自然降雨事件依据单次连续降雨时长(h)和累计降雨量(mm)进行分类统计,并计算降雨强度(mm·h−1),发现RS变化率与降雨时长、降雨量、降雨强度均显著相关(P<0.05),其相关性表现为:降雨量(r=−0.64)>降雨时长(r=−0.43)>降雨强度(r=−0.40)。对比RS和降雨量与不同深度TSVWC的相关性,发现RS和降雨量均与150 cm深度的TS150VWC150相关性最强(rRS-TS=0.68,rRS−VWC =0.60;r雨量−TS=0.35,r雨量−VWC =0.37;P<0.01)。

      表2表明:降雨发生后,RS低于雨前水平。降雨在0~4 h,RS变化率随降雨时长增加而降低;降雨在3~4 h时RS变化率降至最低,达-65.30%;降雨时长大于4 h时,RS变化率随降雨时长增加而逐渐升高。降雨过程中,TA变化率表现为随降雨时长增加而降低的趋势,TS150VWC150的变化率则小幅缓慢升高,但三者变化率均始终低于RS,表明RS对降雨时长的敏感度大于TATS150VWC150。由于SR受昼夜因素影响较大,未参与分析。

      表 2  土壤呼吸速率和环境因子对降雨时长的响应

      Table 2.  Response of soil respiration rate and environmental factors to rainfall time

      降雨时长
      Rainfall time/h
      土壤呼吸速率变化率
      RS rate of change/%
      空气温度变化率
      TA rate of change/%
      150 cm土壤温度变化率
      TS150 rate of change/%
      150 cm土壤含水量变化率
      VWC150 rate of change/%
      0~1 −5.18 −3.70 0.13 0.00
      1~2 −40.65 −18.06 0.13 0.00
      2~3 −56.03 −22.11 0.00 0.24
      3~4 −65.30 −23.34 0.13 0.47
      4~8 −50.28 −23.78 0.27 0.48
      8~12 −42.51 −25.26 0.32 0.57
        注:变化率=(降雨后−降雨前)/降雨前×100%
        Note:rate of change=(after rain−before rain)/before rain×100%

      表3表明:单次累计降雨量在0~12 mm,RS变化率随降雨量增加而降低;降雨量达8~12 mm时,RS变化率降至最低,达−87.42%;降雨量大于12 mm时,RS变化率随降雨量增加而逐渐升高。对RS变化率与降雨量进行回归分析(图3左)发现:降雨量可以解释RS变化率的73.5%。当降雨量大于0.07 mm时,RS即受到抑制;当降雨量达10.44 mm时,RS变化率降至最低,抑制率为−94.65%。降雨过程中,TA均低于雨前水平;降雨量为0~5 mm时,TS150VWC150表现为随降雨量升高而缓慢升高;当降雨量大于5 mm后,TS150VWC150逐步恢复至雨前水平;三者变化率均始终低于RS,表明RS对降雨量的敏感度大于TATS150VWC150

      表 3  土壤呼吸速率和环境因子对降雨量的响应

      Table 3.  Response of soil respiration rate and environmental factors to rainfall

      降雨量
      Rainfall/mm
      土壤呼吸速率变化率
      RS rate of change/%
      空气温度变化率
      TA rate of change/%
      150 cm土壤温度变化率
      TS150 rate of change/%
      150 cm土壤含水量变化率
      VWC150 rate of change/%
      0~1 −12.96 −11.58 0.24 0.00
      1~2 −18.76 −23.97 0.32 0.57
      2~5 −50.44 −17.92 0.43 0.77
      5~8 −85.49 −16.85 0.00 0.30
      8~12 −87.42 −19.15 0.00 0.27
      12~16 −78.17 −20.42 0.00 0.00
      16~20 −66.67 −17.99 0.00 0.00

      图  3  累计降雨量和降雨强度对土壤呼吸速率变化率的影响

      Figure 3.  Effect of accumulated rainfall and rainfall intensity on soil respiration rate of change

      RS变化率与降雨强度(降雨强度=降雨量/降雨时间)进行回归分析(图3右)发现:降雨强度可以解释RS变化的34%。当降雨强度为0~1.95 mm·h−1时,RS变化率随降雨强度增加而降低;当降雨强度为1.95~4.65 mm·h−1时,RS变化率随降雨强度增加而增加;当降雨强度大于4.65 mm·h−1时,RS变化率再次随降雨强度增加而降低。

    • 对观测月内无降雨日和自然降雨日RS与不同深度TS数据进行相关性检验,其中,10、90、120、150 cm深度都呈中等程度以上相关关系(P<0.01,|r|≥0.4)。分别对RS和各深度TS数据进行指数方程拟合(P<0.05),结果(表4)表明:自然降雨日各深度Q10值均高于无降雨日45%左右,且整体随土壤深度增加而升高,分别在90 cm和120 cm深度出现最小值和最大值,其中,无自然降雨日Q10值水平均在“2”以下。

      表 4  土壤呼吸温度敏感性对降雨干扰的响应

      Table 4.  Response of the Q10 to rainfall disturbance

      干扰因素
      Interference factor
      拟合因子
      Fit factor
      拟合方程
      Fitted equation
      拟合度
      R2
      温度敏感系数
      Q10
      无自然降雨日
      Non_rainy day
      TS10 RS = 0.73e0.035T 0.46 1.42
      TS90 RS = 0.006e0.031T 0.34 1.37
      TS120 RS = 0.002e0.042T 0.33 1.53
      TS150 RS = 0.004e0.04T 0.37 1.50
      自然降雨日
      Rainy day
      TS10 RS = 0.243e0.073T 0.47 2.07
      TS90 RS = e0.069T 0.31 1.99
      TS120 RS = e0.08T 0.36 2.23
      TS150 RS = e0.077T 0.42 2.17
    • 1958年Birch发现,在干旱条件下,降雨能使土壤呼吸速率(RS)急剧增加的现象,即“Birch效应”[24],该激发效应在诸多研究中得到验证,并表现为一定量的降雨可以迅速激发RS,当降雨量超过某阈值时才转为抑制作用[25-27]。对该效应的分析,一方面认为,雨水可以迅速置换出土壤空隙中的CO2[28];另一方面认为,雨水可以破坏土壤团聚体释放有机质,促进微生物呼吸[29-32]

      本文在自然降雨对RS日变化影响的研究中发现,日累计降雨量小于0.8 mm时对RS日均值无显著影响,≥0.8 mm会显著抑制RS;自然降雨过程对RS瞬时变化的影响表现为大于0.07 mm的降雨发生就对RS产生抑制作用,即研究区自然降雨发生过程中无“激发效应”出现,该效应通常出现在降雨结束后的3 d内。分析其原因,一方面,自然降雨过程通过降低SRTA和表层TS水平限制植被光合作用,而雨水迅速填充土壤空隙阻碍土壤与大气间气体交换,使植物根系自养呼吸受到抑制[33];另一方面,荒漠生态系统土壤有机质相对匮乏,雨水从土壤中置换出的CO2较少;同时,雨水入渗过程可以缓解根系的水盐胁迫并促进地表凋落物分解[34-36]。因此,自然降雨结束后,恢复的SRTA和表层TS与补充的VWC和土壤有机质可以提高微生物活性并促进植被光合作用和根系呼吸[37],从而有效提高RS水平。

    • RS主要源于植物根系自养呼吸和微生物异养呼吸[38],其不仅受根系活性、土壤微生物和土壤理化性质等因素影响[39-40],还与大气环境有关[41]。本文通过对RS与环境因子日变化的研究发现,SRTATSVWC均对RS变化有影响,且彼此可能存在依次作用关系,但与李思思等[42]对青海高寒区典型林分RS的研究结果不同,本研究中,SRRS的影响比温度因子更直接(时间一致性最强),即植物光合作用强烈时RS也旺盛[4, 43]。同时无降雨发生时RS主要受表层(10 cm)TSVWC影响,与中间锦鸡儿浅根系分布的特征相一致[44];而在自然降雨过程中,RS受到显著抑制且转为受深层(150 cm)TSVWC影响。由此推断,无自然降雨时植物根系自养呼吸是研究区RS的主要来源,其在降雨过程中随光合作用和地表透气性下降而受到明显抑制[28]RS转为以微生物分解深层有机质的异养呼吸主导;而SR不仅在无降雨时对RS有直接影响,其对降雨的响应也最积极(降雨量大于0.6 mm即受到抑制)。因此,本研究认为,当自然降雨发生时,SR最先受到抑制并对RS产生影响,随后TATSVWC协同影响RS变化。

      解欢欢等[25]在对祁连山亚高山草地的研究中发现,少量降雨可以显著刺激RS,且降雨强度对RS无显著影响;而本研究与其结果不同,降雨对RS始终表现为抑制作用,且降雨时长、降雨量和降雨强度均对RS有显著影响。究其原因,本研究区地表植被覆盖度比草地生态系统较低,不同强度的降雨可能对土壤的激溅侵蚀差异较大,使土壤物理结构发生改变进而影响RS

    • 土壤呼吸温度敏感系数Q10是评价RS的重要指标之一,了解环境因子对Q10的影响是预测未来气候变化下土壤碳循环的关键[45]。本研究区观测月在未发生降雨时各土壤深度Q10值均小于2,与Jassal等[46]对美国西海岸冷杉林的研究相一致,即VWC处于亏缺状态时,Q10值明显低于“2”;同时发现,自然降雨日的Q10值会升高45%左右,达到2以上水平,表明降雨对Q10值的激发效应可能与VWC关系密切[47-48];随着土壤深度的增加,CO2含量升高[49]TS更稳定[50],利于提高RuBP羧化酶再生和光和产物向下运转[51],使Q10在降雨和非降雨环境下都随土壤深度增加而升高。

    • (1)研究区各环境因子间可能存在SR-TA-TS10-VWC10顺序的相互作用关系,且各环境因子共同影响RS,其中,RSSR最敏感;无降雨日RS主要受表层(10 cm)TSVWC影响,降雨过程中主要受深层(150 cm)TSVWC影响;自然降雨过程中SR最先受到抑制,而大于0.8 mm的降雨也会影响RS日变化;

      (2)自然降雨过程抑制RS,大于0.07 mm的降雨即对RS产生抑制作用,其中,降雨量对RS的影响最大,降雨时长次之,降雨强度相对最小。当降雨时长达3~4 h,累计降雨量达10.44 mm时,对RS的抑制率最大;

      (3)自然降雨对RS的激发效应通常出现在降雨结束后,该效应可以持续约3 d;

      (4)自然降雨可使Q10值升高,其对Q10值的影响可能与VWC条件有关。

参考文献 (51)

目录

    /

    返回文章
    返回