[1] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297
[2] Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and Their Regulatory Roles in Plants[J]. Annu Rev Plant Biol, 2006, 57:19-53
[3] Ghildiyal M, Zamore P D. Small silencing RNAs: an expanding universe[J]. Nat Rev Genet, 2009, 10(2):94-108
[4] Hammond S M. Dicing and slicing: the core machinery of the RNA interference pathway[J]. Febs Lett, 2005, 579(26):5822-5829
[5] Xie Z, Johansen L K, Gustafson A M, et al. Genetic and functional diversification of small RNA pathways in plants[J]. PLoS Biol, 2004, 2(5):642-652
[6] Schauer S E, Jacobsen S E, Meinke D W, et al. DICER-LIKE1: blind men and elephants in Arabidopsis development[J]. Trends Plant Sci, 2002, 7(11):487-491
[7] Allen E, Xie Z X, Gustafson A M, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants[J]. Cell, 2005, 121(2):207-221
[8] Felippes F F, Weigel D. Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173[J]. Embo Rep, 2009, 10(3):264-270
[9] Cuperus J T, Carbonell A, Fahlgren N, et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis[J]. Nat Struct Mol Biol, 2010, 17(8):997-1003
[10] Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogen-inducible endogenous siRNA in plant immunity[J]. Proc Natl Acad Sci U S A, 2006, 103(47):18002-18007
[11] Borsani O, Zhu J, Verslues P E, et al. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis[J]. Cell, 2005, 123(7):1279-1291
[12] Deleris A, Gallego-Bartolome J, Bao J, et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense[J]. Science, 2006, 313(5783):68-71
[13] Dunoyer P, Himber C, Ruiz-Ferrer V, et al. Intra and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways[J]. Nat Genet, 2007, 39(7):848-856
[14] Chapman E J, Carrington J C. Specialization and evolution of endogenous small RNA pathways[J]. Nat Rev Genet, 2007, 8(11):884-896
[15] Matzke M, Kanno T, Daxinger L, et al. RNA-mediated chromatin-based silencing in plants[J]. Curr Opin Cell Biol, 2009, 21(3):367-376
[16] Chellappan P, Xia J, Zhou X, et al. siRNAs from miRNA sites mediate DNA methylation of target genes[J]. Nucleic Acids Res, 2010, 38(20):6883-6894
[17] Lu C, Tej S S, Luo S, et al. Elucidation of the small RNA component of the transcriptome[J]. Science, 2005, 309(5740):1567-1569
[18] Morin R D, Aksay G, Dolgosheina E, et al. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa[J]. Genome Res, 2008, 18(4):571-584
[19] Dolgosheina E V, Morin R D, Aksay G, et al. Conifers have a unique small RNA silencing signature[J]. RNA, 2008, 14(8):1508-1515
[20] Yakovlev I A, Fossdal C G, Johnsen O. MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce[J]. New Phytol, 2010, 187(4):1154-1169
[21] Axtell M J, Snyder J A, Bartel D P. Common functions for diverse small RNAs of land plants[J]. Plant Cell, 2007, 19(6):1750-1769
[22] Ahuja M R, Neale D B. Evolution of Genome Size in Conifers[J]. Silvae Genetica, 2005, 54(3):126-137
[23] Vazquez F, Blevins T, Ailhas J, et al. Evolution of Arabidopsis MIR genes generates novel microRNA classes[J]. Nucleic Acids Res, 2008, 36(20):6429-6438
[24] Tedder P, Zubko E, Westhead D R, et al. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA[J]. RNA, 2009, 15(6):1012-1020
[25] Pang M, Woodward A W, Agarwal V, et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.)[J]. Genome Biol, 2009, 10(11):R122
[26] Wan L C, Wang F, Guo X, et al. Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing[J]. BMC Plant Biol, 2012, 12:146
[27] Zhang J, Wu T, Li L, et al. Dynamic expression of small RNA populations in larch (Larix leptolepis)[J]. Planta, 2013, 237(1):89-101
[28] Zhang J, Zhang S, Han S, et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis[J]. Planta, 2012, 236(2):647-657
[29] Juarez M T, Kui J S, Thomas J, et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity[J]. Nature, 2004, 428(6978):84-88
[30] Parry G, Calderon-Villalobos L I, Prigge M, et al. Complex regulation of the TIR1/AFB family of auxin receptors[J]. Proc Natl Acad Sci USA, 2009, 106(52):22540-22545
[31] Liu H H, Tian X, Li Y J, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14(5):836-843
[32] Molnar A, Schwach F, Studholme D J, et al. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii[J]. Nature, 2007, 447(7148):1126-1129
[33] Lu S, Sun Y H, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development[J]. Plant J, 2007, 51:1077-1098
[34] Wan L C, Zhang H, Lu S, et al. Transcriptome-wide identification and characterization of miRNAs from Pinus densata[J]. BMC Genomics, 2012, 13:132
[35] Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data[J]. Nucleic Acids Res, 2011, 39(1):152-157
[36] Bowe L M, Gwe'naële C,dePamphilis C W. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers[J]. Proc Natl Acad Sci USA, 2000, 97:4092-4097
[37] Yang H, Matsubayashi Y, Nakamura K, et al. Oryza sativa PSK gene encodes a precursor of phytosulfokine-alpha, a sulfated peptide growth factor found in plants[J]. Proc Natl Acad Sci USA, 1999, 96(23):13560-13565
[38] Lindsey K, Casson S, Chilley P. peptides:new signaling molecules in plants[J]. Trends Plant Sci, 2002, 7(2):78-83
[39] Howell M D, Fahlgren N, Chapman E J, et al. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA and tasiRNA-directed targeting[J]. Plant Cell, 2007, 19(3):926-942
[40] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880):1185-1190
[41] Bao N, Lye K W, Barton M K. MicroRNA binding sites in Arabidopsis class Ⅲ HD-ZIP mRNAs are required for methylation of the template chromosome[J]. Dev Cell, 2004, 7(5):653-662
[42] Khraiwesh B, Arif M A, Seumel G I, et al. Transcriptional control of gene expression by microRNAs[J]. Cell, 2010, 140(1):111-122
[43] Peragine A, Yoshikawa M, Wu G, et al. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis[J]. Genes Dev, 2004, 18(19):2368-2379
[44] Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs[J]. Mol Cell, 2004, 16(1):69-79
[45] Wassenegger M, Krczal G. Nomenclature and functions of RNA-directed RNA polymerases[J]. Trends Plant Sci, 2006, 11(3):142-151
[46] Matzke M, Kanno T, Huettel B, et al. Targets of RNA-directed DNA methylation[J]. Curr Opin Plant Biol, 2007, 10(5):512-519
[47] Jia Y, Lisch D R, Ohtsu K, et al. Loss of RNA-dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24 nt small RNAs[J]. PLoS Genet, 2009, 5(11):e1000737
[48] Wu L, Zhou H, Zhang Q, et al. DNA Methylation Mediated by a MicroRNA Pathway[J]. Mol Cell, 2010, 38(3):465-475
[49] Allen E, Xie Z X, Gustafson A M, et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana[J]. Nature Genetics, 2004, 36(12):1282-1290
[50] Nystedt B, Street N R, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013, 497(7451):579-584
[51] Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, et al. Architecture and evolution of a minute plant genome[J]. Nature, 2013, 498(7452):94-98
[52] Filonova L H, Bozhkov P V, von Arnold S. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking[J]. J Exp Bot, 2000, 51(343):249-264
[53] Cairney J, Pullman G S. The cellular and molecular biology of conifer embryogenesis[J]. New Phytol, 2007, 176(3):511-536
[54] Kirst M, Johnson A F, Baucom C, et al. Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2003, 100(12):7383-7388
[55] Lorenz W W, Sun F, Liang C, et al. Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries[J]. Tree Physiol, 2006, 26(1):1-16
[56] Cairney J, Zheng L, Cowels A, et al. Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis[J]. Plant Mol Biol, 2006, 62(4-5):485-501
[57] Vernoux T, Benfey P N. Signals that regulate stem cell activity during plant development[J]. Curr Opin Genet Dev, 2005, 15(4):388-394
[58] Williams L, Grigg S P, Xie M, et al. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes[J]. Development, 2005, 132(16):3657-3668
[59] Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110(4):513-520
[60] Luo Y C, Zhou H, Li Y, et al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development[J]. Febs Lett, 2006, 580(21):5111-5116
[61] Wu X M, Liu M Y, Ge X X, et al. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange[J]. Planta, 2011, 233(3):495-505
[62] Nodine M D, Bartel D P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis[J]. Genes Dev, 2010, 24(23):2678-2692
[63] Willmann M R, Mehalick A J, Packer R L, et al. MicroRNAs regulate the timing of embryo maturation in Arabidopsis[J]. Plant Physiol, 2011, 155(4):1871-1884
[64] Oh T J, Wartell R M, Cairney J, et al. Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA proces sing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda)[J]. New Phytol, 2008, 179(1):67-80
[65] Braybrook S A, Stone S L, Park S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis[J]. Proc Natl Acad Sci USA, 2006, 103(9):3468-3473
[66] Holdsworth M J, Bentsink L, Soppe W J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination[J]. New Phytol, 2008, 179(1):33-54