[1] Christian C, Frank F, Karl-Heinz H, et al. Photosynthetic and leaf water potential responses of Alnus glutinosa saplings to stem-base inoculaton with Phytophthora alni subsp. alni[J]. Tree Physiology, 2008, 28(11): 1703-1711. doi: 10.1093/treephys/28.11.1703
[2] Savi T, Casolo V, Dal Borgo A, et al. Drought-induced dieback of Pinus nigra: a tale of hydraulic failure and carbon starvation[J]. Conservation Physiology, 2019, 7(1): coz012.
[3] Blackman C J, Creek D, Maier C, et al. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure[J]. Tree Physiology, 2019, 39(6): 910-924. doi: 10.1093/treephys/tpz016
[4] Balducci L, Deslauriers A, Giovannelli A, et al. How do drought and warming influence survival and wood traits of Picea mariana saplings?[J]. Journal of Experimental Botany, 2015, 66(1): 377-389. doi: 10.1093/jxb/eru431
[5] 李 捷, 冯丽丹, 王有科, 等. 尖镰孢菌(Fusarium oxysporum)侵染对枸杞光合和荧光参数的影响[J]. 中国沙漠, 2015, 35(6):1565-1572. doi: 10.7522/j.issn.1000-694X.2015.00126
[6] Berger S, Sinha A K, Roitsch T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions[J]. Journal of Experimental Botany, 2007, 58(15-16): 4019-4026. doi: 10.1093/jxb/erm298
[7] Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice[J]. Annals of Botany, 2007, 99(6): 1161-1173. doi: 10.1093/aob/mcm052
[8] Mathur S, Agrawal D, Jajoo A. Photosynthesis: response to high temperature stress[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 137: 116-126. doi: 10.1016/j.jphotobiol.2014.01.010
[9] Fermín G, José G J, Corina G. Plant-pathogen interactions: leaf physiology alterations in poplars infected with rust (Melampsora medusae)[J]. Tree Physiology, 2018, 38: 925-935. doi: 10.1093/treephys/tpx174
[10] Franziska E, Erica P, Heiko V, et al. Rust infection of black poplar trees reduces photosynthesis but does not affect isoprene biosynthesis or emission[J]. Frontiers in Plant Science, 2018, 9: 1733. doi: 10.3389/fpls.2018.01733
[11] Gruber B R, Kruger E L, McManus P S. Effects of cherry leaf spot on photosynthesis in tart cherry 'Montmorency' foliage[J]. Phytopathology, 2012, 102(7): 656-661. doi: 10.1094/PHYTO-12-11-0334
[12] Rohrs-Richey J K, Mulder C P, Winton L M, et al. Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress[J]. New Phytologis, 2011, 189(1): 295-307. doi: 10.1111/j.1469-8137.2010.03472.x
[13] Cerqueira A, Alves A, Berenguer H, et al. Phosphite shifts physiological and hormonal profile of Monterey pine and delays Fusarium circinatum progression[J]. Plant Physiology and Biochemistry., 2017, 114: 88-99. doi: 10.1016/j.plaphy.2017.02.020
[14] Hossain M, Veneklaas E J, Hardy G, et al. Tree host-pathogen interactions as influenced by drought timing: linking physiological performance, biochemical defence and disease severity[J]. Tree Physiology, 2019, 39(1): 6-18. doi: 10.1093/treephys/tpy113
[15] Xing J, Li P, Zhang Y, et al. Fungal pathogens of canker disease trigger canopy dieback in poplar saplings by inducing functional failure of the phloem and cambium and carbon starvation in the xylem[J]. Physiological and Molecular Plant Pathology, 2020, 112: 101523. doi: 10.1016/j.pmpp.2020.101523
[16] Lachenbruch B, Zhao J P. Effects of phloem on canopy dieback, tested with manipulations and a canker pathogen in the Corylus avellana/Anisogramma anomala host/pathogen system[J]. Tree Physiology, 2019, 39(7): 1086-1098. doi: 10.1093/treephys/tpz027
[17] Aguade D, Poyatos R, Gomez M, et al. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.)[J]. Tree Physiology, 2015, 35(3): 229-242. doi: 10.1093/treephys/tpv005
[18] Zhao D, Glynn N C, Glaz B, et al. Orange rust effects on leaf photosynthesis and related characters of sugarcane.[J]. Plant Disease, 2011, 95(6): 640-646. doi: 10.1094/PDIS-10-10-0762
[19] Sevanto S, McDowell N G, Dickman L T, et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses[J]. Plant, Cell & Environment, 2014, 37(1): 153-161.
[20] McDowell N G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant Physiology, 2011, 155(3): 1051-1059. doi: 10.1104/pp.110.170704
[21] Sala A, Piper F, Hoch G. Physiological mechanisms of drought-induced tree mortality are far from being resolved[J]. New Phytologist, 2010, 186(2): 274-281. doi: 10.1111/j.1469-8137.2009.03167.x
[22] McDowell N G, Sevanto S. The mechanisms of carbon starvation: how, when, or does it even occur at all?[J]. New Phytologist, 2010, 186(2): 264-266. doi: 10.1111/j.1469-8137.2010.03232.x
[23] Jordi M V. Carbon storage in trees: pathogens have their say[J]. Tree Physiology, 2014, 34(3): 215-217. doi: 10.1093/treephys/tpu010
[24] Jonàs O, Jan S, Jordi M-V. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality[J]. The New Phytologist, 2014, 203(4): 1028-35. doi: 10.1111/nph.12857
[25] Bortolami G, Farolfi E, Badel E, et al. Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity[J]. Journal of Experimental Botany, 2021, 72(10): 3914-3928. doi: 10.1093/jxb/erab117
[26] Li P, Liu W, Zhang Y, et al. Fungal canker pathogens trigger carbon starvation by inhibiting carbon metabolism in poplar stems[J]. Scitific Reports, 2019, 9(1): 10111. doi: 10.1038/s41598-019-46635-5
[27] Júnior A F N, Ribeiro R V, Appezzato-da-Glória B, et al. Phakopsora euvitis causes unusual damage to leaves and modifies carbohydrate metabolism in grapevine[J]. Frontiers in Plant Science, 2017, 8: 1675. doi: 10.3389/fpls.2017.01675
[28] 周艳威, 陈金慧, 鲁 路, 等. 杂交鹅掌楸体胚再生植株淹水胁迫下叶片超微结构及光合特性变化[J]. 林业科学, 2018, 54(3):19-28.
[29] Holzwarth A R, Lenk D, Jahns P. On the analysis of non-photochemical chlorophyll fluorescence quenching curves[J]. Biochimica et Biophysica Acta, 2013, 1827(6): 786-792. doi: 10.1016/j.bbabio.2013.02.011
[30] Muthuchelian K, Porta N L, Bertamini M, et al. Cypress canker induced inhibition of photosynthesis in field grown cypress (Cupressus sempervirens L.) needles[J]. Physiological and Molecular Plant Pathology, 2005, 67(1): 33-39. doi: 10.1016/j.pmpp.2005.08.007
[31] Watling J R, Press M C, Quick W P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum[J]. Plant Physiology, 2000, 123(3): 1143-1152. doi: 10.1104/pp.123.3.1143
[32] Kitajima M K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest[J]. Journal of Ecology, 2007, 95(2): 383-395. doi: 10.1111/j.1365-2745.2006.01207.x
[33] Chantuma P, Lacointe A, Kasemsap P, et al. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping[J]. Tree Physiology, 2009, 29(8): 1021-1031. doi: 10.1093/treephys/tpp043
[34] Paap T, Burgess T I, Calver M, et al. A thirteen‐year study on the impact of a severe canker disease of Corymbia calophylla, a keystone tree in Mediterranean‐type forests[J]. Forest Pathology, 2017, 47(1): 12292.
[35] Porta N L, Capretti P, Thomsen I M, et al. Forest pathogens with higher damage potential due to climate change in Europe[J]. Canadian Journal of Plant Pathology, 2008, 30(2): 177-195. doi: 10.1080/07060661.2008.10540534