[1] STEINKAMP J, HICKLER T. Is drought‐induced forest dieback globally increasing?[J]. Journal of Ecology, 2015, 103(1): 31-43. doi: 10.1111/1365-2745.12335
[2] CHAGNON C, WOTHERSPOON A R, ACHIM A. Deciphering the black spruce response to climate variation across eastern Canada using a meta-analysis approach[J]. Forest Ecology and Management, 2022, 520(15): 120375.
[3] KANNENBERG S A, NOVICK K A, ALEXANDER M R, et al. Linking drought legacy effects across scales: From leaves to tree rings to ecosystems[J]. Glob Chang Biol, 2019, 25(9): 2978-2992. doi: 10.1111/gcb.14710
[4] BABST F, POULTER B, TROUET V, et al. Site‐and species‐specific responses of forest growth to climate across the European continent[J]. Global Ecology and Biogeography, 2013, 22(6): 706-717. doi: 10.1111/geb.12023
[5] GAO W Q, LIU J F, XUE Z M, et al. Geographical patterns and drivers of growth dynamics of Q. variabilis[J]. Forest Ecology and Management, 2018, 429: 256-266. doi: 10.1016/j.foreco.2018.07.024
[6] SáNCHEZ‐SALGUERO R, CAMARERO J J, GUTIéRREZ E, et al. Assessing forest vulnerability to climate warming using a process‐based model of tree growth: Bad prospects for rear‐edges[J]. Global Change Biology, 2017, 23(7): 2705-2719. doi: 10.1111/gcb.13541
[7] SáNCHEZ-SALGUERO R, CAMARERO J J, HEVIA A, et al. What drives growth of Scots pine in continental Mediterranean climates: drought, low temperatures or both?[J]. Agricultural and Forest Meteorology, 2015, 206: 151-162. doi: 10.1016/j.agrformet.2015.03.004
[8] GAO W Q, NI Y Y, XUE Z M, et al. Population structure and regeneration dynamics of Q. variabilis along latitudinal and longitudinal gradients[J]. Ecosphere, 2017, 8(4): e01737.
[9] CAMARERO J J, GAZOL A, SANGüESA‐BARREDA G, et al. To die or not to die: early warnings of tree dieback in response to a severe drought[J]. Journal of Ecology, 2015, 103(1): 44-57. doi: 10.1111/1365-2745.12295
[10] ARZAC A, GARCIA-CERVIGON A I, VICENTE-SERRANO S M, et al. Phenological shifts in climatic response of secondary growth allow Juniperus sabina L. to cope with altitudinal and temporal climate variability[J]. Agricultural and Forest Meteorology, 2016, 217: 35-45.
[11] HUANG J, TARDIF J C, BERGERON Y, et al. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest[J]. Global Change Biology, 2010, 16(2): 711-731. doi: 10.1111/j.1365-2486.2009.01990.x
[12] TARDIF J, CONCIATORI F, NANTEL P, et al. Radial growth and climate responses of white oak (Q. alba) and northern red oak (Q. rubra) at the northern distribution limit of white oak in Quebec, Canada[J]. Journal of Biogeography, 2006, 33(9): 1657-69. doi: 10.1111/j.1365-2699.2006.01541.x
[13] GOLDBLUM D. The geography of white oak's (Q. alba L. ) response to climatic variables in North America and speculation on its sensitivity to climate change across its range[J]. Dendrochronologia, 2010, 28(2): 73-83. doi: 10.1016/j.dendro.2009.07.001
[14] 国家林业局. 中国森林资源报告 [M]. 北京: 中国林业出版社, 2019.
[15] 李宗善, 陈维梁, 韦景树, 等. 北京东灵山辽东栎林树木生长对气候要素的响应特征[J]. 生态学报, 2021, 41(1):27-37.
[16] FRITTS H C. Tree Rings and Climate. [M] London: Academic Press, 1976
[17] HOLMES R L. Computer-assisted quality control in tree-ring dating and measurement [J]. Tree-Ring Bull,1983.43: 69-75.
[18] ZANG C, BIONDI F. Treeclim: an R package for the numerical calibration of proxy-climate relationships[J]. Ecography, 2015, 38(4): 431-436. doi: 10.1111/ecog.01335
[19] 王兆鹏. 罗霄山南部四种针叶树种多种树木年轮参数气候响应及气候重建研究 [D]. 乌鲁木齐: 新疆师范大学, 2022.
[20] BARBER V A, JUDAY G P, FINNEY B P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress[J]. Nature, 2000, 405(6787): 668-673. doi: 10.1038/35015049
[21] JIAO L, JIANG Y, ZHANG W, et al. Assessing the stability of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, northwest China[J]. Forest Ecology and Management, 2019, 433: 667-677. doi: 10.1016/j.foreco.2018.11.046
[22] CORREA‐DíAZ A, SILVA L C R, HORWATH W R, et al. From trees to ecosystems: spatiotemporal scaling of climatic impacts on Montane Landscapes using dendrochronological, isotopic, and remotely sensed data[J]. Global Biogeochemical Cycles, 2020, 34(3): e2019GB006325.
[23] DU F K, QI M, ZHANG Y Y, et al. Asymmetric character displacement in mixed oak stands[J]. New Phytol, 2022, 236(3): 1212-1224. doi: 10.1111/nph.18311
[24] SHARMA B, FAN Z-X, PANTHI S, et al. Warming induced tree-growth decline of Toona ciliata in (sub-) tropical southwestern China[J]. Dendrochronologia, 2022, 73: 125954. doi: 10.1016/j.dendro.2022.125954
[25] 都彦廷. 大兴安岭地区树轮宽度对气候变化的响应及NDVI重建研究 [D]. 哈尔滨: 哈尔滨师范大学, 2021.