[1] 王文卿, 张 林, 张雅棉, 等. 红树林退塘还林研究进展[J]. 厦门大学学报, 2021, 60(2):348-354.
[2] 陈泳滨, 经佐琴, 徐 斌, 等. 不同种源秋茄引种至上海的生长状况比较[J]. 复旦学报(自然科学版), 2022, 61(4):424-434.
[3] TOMLINSON P B. The botany of mangroves[M]. Cambridge: Cambridge University Press, 2016.
[4] OSLAND M J, STEVENS P W, LAMONT M M, et al. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures[J]. Global Change Biology, 2021, 27(13): 3009-3034. doi: 10.1111/gcb.15563
[5] OSLAND M J, HUGHES A R, ARMITAGE A R, et al. The impacts of mangrove range expansion on wetland ecosystem services in the southeastern United States: current understanding, knowledge gaps, and emerging research needs[J]. Global Change Biology, 2022, 28(10): 3163-3187. doi: 10.1111/gcb.16111
[6] CHEN L Z, WANG W Q, LI Q Q, et al. Mangrove species' responses to winter air temperature extremes in China[J]. Ecosphere, 2017, 8(6): e01865.
[7] 郑春芳, 陈 威, 刘伟成, 等. 低温胁迫后红树植物秋茄幼苗光合特性及蔗糖代谢的恢复机制[J]. 生态学杂志, 2020, 39(12):4048-4056.
[8] ABDULLAH S N A, AZZEME A M, YOUSEFI K. Fine-Tuning cold stress response through regulated cellular abundance and mechanistic actions of transcription factors[J]. Frontiers in Plant Science, 2022, 13: 850216. doi: 10.3389/fpls.2022.850216
[9] BAILLO E H, KIMOTHO R N, ZHANG Z, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes, 2019, 10(10): 771. doi: 10.3390/genes10100771
[10] SHARMA R, SINGH G, BHATTACHARYA S, et al. Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress[J]. PLoS ONE, 2018, 13(9): e0203266. doi: 10.1371/journal.pone.0203266
[11] FEI J, WANG Y S, CHENG H, et al. The Kandelia obovata transcription factor KoWRKY40 enhances cold tolerance in transgenic Arabidopsis[J]. BMC Plant Biology, 2022, 22(1): 274. doi: 10.1186/s12870-022-03661-2
[12] SU W, YE C, ZHANG Y, et al. Identification of putative key genes for coastal environments and cold adaptation in mangrove Kandelia obovata through transcriptome analysis[J]. Science of the Total Environment, 2019, 681: 191-201. doi: 10.1016/j.scitotenv.2019.05.127
[13] FINKELSTEIN R R, GAMPALA S S, ROCK C D. Abscisic acid signaling in seeds and seedlings[J]. The Plant Cell, 2002, 14(Suppl): S15-45.
[14] OHKUMA K, LYON J L, ADDICOTT F T, et al. Abscisin II, an abscission-accelerating substance from young cotton fruit[J]. Science, 1963, 142(3599): 1592-1593. doi: 10.1126/science.142.3599.1592
[15] MA Y, SZOSTKIEWICZ I, KORTE A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009, 324(5930): 1064-1068. doi: 10.1126/science.1172408
[16] 胡潇婕, 毛东海. 基于RNA-Seq技术分析植物激素信号途径在水稻幼苗中对低温胁迫的应答规律[J]. 农业现代化研究, 2019, 40(5):878-890.
[17] 田玉珍, 党兆霞, 吕前前, 等. 树体休眠期前苹果花芽对低温早期响应的转录组分析[J]. 果树学报, 2020, 37(5):615-624. doi: 10.13925/j.cnki.gsxb.20190385
[18] 田介云. 花椒幼苗低温胁迫下生理和分子响应机制研究[D]. 杨凌: 西北农林科技大学, 2021.
[19] HONG L, SU W, ZHANG Y, et al. Transcriptome profiling during mangrove viviparity in response to abscisic acid[J]. Scientific Reports, 2018, 8(1): 770. doi: 10.1038/s41598-018-19236-x
[20] WANG K, BAI Z Y, LIANG Q Y, et al. Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress[J]. BMC Genomics, 2018, 19(1): 319. doi: 10.1186/s12864-018-4706-x
[21] MA L, COULTER J A, LIU L, et al. Transcriptome analysis reveals key cold-stress-responsive genes in winter rapeseed (Brassica rapa L. )[J]. International Journal of Molecular Sciences, 2019, 20(5): 1071. doi: 10.3390/ijms20051071
[22] ZHOU P, LI X, LIU X, et al. Transcriptome profiling of Malus sieversii under freezing stress after being cold-acclimated[J]. BMC Genomics, 2021, 22(1): 681. doi: 10.1186/s12864-021-07998-0
[23] SONG L, HUANG S C, WISE A, et al. A transcription factor hierarchy defines an environmental stress response network[J]. Science, 2016, 354(6312): aag1550. doi: 10.1126/science.aag1550
[24] LI M Y, LIU J X, HAO J N, et al. Genomic identification of AP2/ERF transcription factors and functional characterization of two cold resistance-related AP2/ERF genes in celery (Apium graveolens L. )[J]. Planta, 2019, 250(4): 1265-1280. doi: 10.1007/s00425-019-03222-2
[25] ILLGEN S, ZINTL S, ZUTHER E, et al. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress[J]. Plant Molecular Biology, 2020, 103(3): 303-320. doi: 10.1007/s11103-020-00993-1
[26] PANG X, XUE M, REN M, et al. Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses[J]. Genetics and Molecular Biology, 2019, 42(3): 624-634. doi: 10.1590/1678-4685-gmb-2018-0101
[27] XU W, ZHANG N, JIAO Y, et al. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis[J]. Molecular Biology Reports, 2014, 41(8): 5329-5342. doi: 10.1007/s11033-014-3404-2
[28] YAO C, LI W, LIANG X, et al. Molecular cloning and characterization of MbMYB108, a Malus baccata MYB transcription factor gene, with functions in tolerance to cold and drought stress in transgenic Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2022, 23(9): 4846. doi: 10.3390/ijms23094846
[29] MA H, LIU C, LI Z, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology, 2018, 178(2): 753-770. doi: 10.1104/pp.18.00436
[30] SU C F, WANG Y C, HSIEH T H, et al. A novel MYBS3-dependent pathway confers cold tolerance in rice[J]. Plant Physiology, 2010, 153(1): 145-158. doi: 10.1104/pp.110.153015
[31] 刘林芝, 欧阳欢, 李兴涛, 等. ‘赣南早’脐橙在干旱胁迫下的生理及转录组研究[J]. 热带作物学报, 2022, 43(5):893-903.
[32] ZHANG X, YANG Z, LI Z, et al. De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress[J]. Gene, 2019, 710: 375-386. doi: 10.1016/j.gene.2019.05.055
[33] KANEHISA M, GOTO S. KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1): 27-30. doi: 10.1093/nar/28.1.27
[34] LAI R, FENG X, CHEN J, et al. De novo transcriptome assembly and comparative transcriptomic analysis provide molecular insights into low temperature stress response of Canarium album[J]. Scientific Reports, 2021, 11(1): 10561. doi: 10.1038/s41598-021-90011-1
[35] WANG J, GUO J, ZHANG Y, et al. Integrated transcriptomic and metabolomic analyses of yellow horn (Xanthoceras sorbifolia) in response to cold stress[J]. PLoS One, 2020, 15(7): e0236588. doi: 10.1371/journal.pone.0236588
[36] WU K, DUAN X, ZHU Z, et al. Physiological and transcriptome analysis of Magnolia denudata leaf buds during long-term cold acclimation[J]. BMC Plant Biology, 2021, 21(1): 460. doi: 10.1186/s12870-021-03181-5
[37] SAH S K, REDDY K R, LI J. Abscisic acid and abiotic stress tolerance in crop plants[J]. Frontiers in Plant Science, 2016, 7: 571.
[38] FUJITA Y, FUJITA M, SATOH R, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. Plant Cell, 2005, 17(12): 3470-3488. doi: 10.1105/tpc.105.035659
[39] ZHANG Q, KONG X, YU Q, et al. Responses of PYR/PYL/RCAR ABA receptors to contrasting stresses, heat and cold in Arabidopsis[J]. Plant Signal Behavior, 2019, 14(12): 1670596. doi: 10.1080/15592324.2019.1670596
[40] REN C, KUANG Y, LIN Y, et al. Overexpression of grape ABA receptor gene VaPYL4 enhances tolerance to multiple abiotic stresses in Arabidopsis[J]. BMC Plant Biology, 2022, 22(1): 271. doi: 10.1186/s12870-022-03663-0
[41] GONZÁLEZ-GARCÍA M P, RODRÍGUEZ D, NICOLÁS C, et al. Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination[J]. Plant Physiology, 2003, 133(1): 135-144. doi: 10.1104/pp.103.025569
[42] HU X, LIU L, XIAO B, et al. Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2[J]. Journal Plant Physiology, 2010, 167(15): 1307-1315. doi: 10.1016/j.jplph.2010.04.014
[43] YUE X, ZHANG G, ZHAO Z, et al. A cryophyte transcription factor, CbABF1, confers freezing, and drought tolerance in tobacco[J]. Frontiers in Plant Science, 2019, 10: 699. doi: 10.3389/fpls.2019.00699