• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 35 Issue 6
Nov.  2022
Article Contents
Turn off MathJax

Citation:

Effects of Slow-release Fertilizer Addition and Inoculation of Mycorrhizal Fungi on the Growth Traits and Nutrient Status of Cyclobalanopsis gilva Container Seedlings

  • Corresponding author: WANG Bin, ylwangbin@sina.com
  • Received Date: 2022-04-12
    Accepted Date: 2022-05-27
  • Objective To improve the container seedlings cultivation level of Cyclobalanopsis gilva with mycorrhiza. Method Based on the interaction experiments of different slow-release fertilizer addition levels and inoculation of mycorrhizal fungi, the effects of slow-release fertilizer × mycorrhizal fungi on the growth traits and nutrient status of 1-year-old container seedlings of Cyclobalanopsis gilva were analyzed. A split-plot experimental design was used with inoculation of mycorrhizal fungi in the main plot and different slow-release fertilizer addition levels in the sub-plot. The main plot was mycorrhizal treatment, which was divided into two treatments: inoculation (10 mL of Pisolithus tinctorius with a concentration of 36.28 mg·mL−1 was injected into the middle part of the seedling container) and non inoculation. The area was treated with matrix slow-release fertilizer addition, and five slow-release fertilizer addition gradients (1.50, 2.25, 3.00, 3.75, and 4.50 kg·m−3) were set. Results Inoculation of mycorrhizal fungi promoted the growth of 1-year-old C. gilva container seedlings under different slow-release fertilizer addition levels. There was significant interaction between slow-release fertilizer addition and inoculation of mycorrhizal fungi on total biomass and P utilization index of container seedlings. After inoculation with mycorrhizal fungi, growth traits such as seedling height, caliper, sturdiness quotient, total biomass, total root length and root diameter increased by 18.70%, 7.16%, 10.75%, 24.55%, 1.02% and 18.47% compared with that no inoculation, respectively. N content, N uptake and utilization index, P uptake and utilization index increased by 2.04%, 27.10%, 27.67%, 19.72% and 30.52%, respectively, while P content decreased by 2.94%. There were extremely significant differences in growth traits and nutrient status between inoculated and non-inoculated except total root length and N and P contents. Regardless of whether mycorrhizal fungi were inoculated or not, with the increase of slow-release fertilizer addition level, all growth traits increased first and then decreased except root diameter, P content and uptake showed an overall increasing trend. The growth was the best when the slow-release fertilizer addition level was 3 kg·cm−3. The N content and absorption of the container seedlings without mycorrhizal inoculation showed a trend of increasing first and then decreasing, while the N and P utilization indexes decreased first and then increased. There was no obvious change in N content and N absorption. Conclusion Inoculation of ectomycorrhizal fungus with P. tinctorius can promote the growth of C. gilva container seedlings and improve the nutrient utilization efficiency of N and P, and the effect of promoting mycorrhizal growth is more significant under low slow-release fertilizer addition.. In production, inoculation of mycorrhizal fungi can improve the quality of container seedlings and reduce the use of slow-release fertilizer, which is helpful to the cultivation of high quality seedlings of C. gilva and save seedling cost.
  • 加载中
  • [1] 王 艺, 丁贵杰. 外生菌根对马尾松幼苗生长、生理特征和养分的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(2):97-102.

    [2]

    Thomas R Q, Canham C D, Weathers K C, et al. Increased tree carbon storage in response to nitrogen deposition in the US[J]. Nature Geoscience, 2010, 3(1): 13-17. doi: 10.1038/ngeo721
    [3]

    Averill C, Dietze M C, Bhatnagar J M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks[J]. Global Change Biology, 2018, 24(9): 4544-4553.
    [4]

    Deforest J L, Snell R S. Tree growth response to shifting soil nutrient economy depends on mycorrhizal associations[J]. New Phytologist, 2020, 225(6): 2557-2566. doi: 10.1111/nph.16299
    [5] 郝龙飞, 郝文颖, 王续富, 等. 4种外生菌根真菌对氮源的响应研究[J]. 南方林业科学, 2020, 48(3):20-24.

    [6] 王 倩, 李振双, 杨富成, 等. 外生菌根共生对林木氮素吸收的促进作用[J]. 世界林业研究, 2021, 34(3):19-24. doi: 10.13348/j.cnki.sjlyyj.2020.0133.y

    [7] 张小燕. 4种外生菌根真菌吸收氮素营养的特性[J]. 微生物学杂志, 2013, 33(1):14-19.

    [8]

    Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant Physiology, 2003, 133(1): 16-20. doi: 10.1104/pp.103.024380
    [9] 刘 辉, 吴小芹, 陈 丹. 4种外生菌根真菌对难溶性磷酸盐的溶解能力[J]. 西北植物学报, 2010, 30(1):143-149.

    [10] 薛小平, 张 深, 李海涛, 等. 磷对外生菌根真菌松乳菇和双色蜡蘑草酸、氢离子和磷酸酶分泌的影响[J]. 菌物学报, 2008, 27(2):193-200. doi: 10.13346/j.mycosystema.2008.02.003

    [11] 黄盛怡, 吴统贵, 楚秀丽, 等. 磷添加和接种菌根菌对马尾松不同家系容器苗的生长及磷素利用效应[J]. 林业科学研究, 2021, 34(5):142-151. doi: 10.13275/j.cnki.lykxyj.2021.005.017

    [12] 徐志红, 戴良选, 张 斌, 等. 氮素指数施肥对赤皮青冈苗期生长的影响[J]. 中南林业科技大学学报, 2020, 40(11):85-92. doi: 10.14067/j.cnki.1673-923x.2020.11.011

    [13] 李峰卿, 王秀花, 楚秀丽, 等. 缓释肥N/P比及加载量对5种珍贵树种1年生苗生长和养分库构建的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(1):72-80.

    [14] 赵嫦妮, 徐德禄, 李志辉. 配方施肥对赤皮青冈容器苗生长的影响[J]. 中南林业科技大学学报, 2013, 33(5):22-25. doi: 10.14067/j.cnki.1673-923x.2013.05.017

    [15] 吴小林, 张东北, 楚秀丽, 等. 赤皮青冈容器苗不同基质配比和缓释肥施用量的生长效应[J]. 林业科学研究, 2014, 27(6):794-800. doi: 10.13275/j.cnki.lykxyj.2014.06.014

    [16] 靳 微. 几种栎树外生菌根真菌多样性及其对苗木生长和养分吸收的影响[D]. 北京: 中国林业科学研究院, 2019.

    [17] 张中峰, 张金池, 黄玉清, 等. 接种菌根真菌对青冈栎幼苗耐旱性的影响[J]. 生态学报, 2016, 36(11):3402-3410.

    [18] 张中峰, 张金池, 黄玉清, 等. 水分胁迫和接种菌根真菌对青冈栎根系形态的影响[J]. 生态学杂志, 2015, 34(5):1198-1204. doi: 10.13292/j.1000-4890.20150311.011

    [19] 祁金玉, 邓继峰, 尹大川, 等. 外生菌根菌对油松幼苗抗氧化酶活性及根系构型的影响[J]. 生态学报, 2019, 39(8):2826-2832.

    [20] 王 艺, 王秀花, 吴小林, 等. 缓释肥加载对浙江楠和闽楠容器苗生长和养分库构建的影响[J]. 林业科学, 2013, 49(12):57-63.

    [21]

    Hawkins B J. Family variation in nutritional and growth traits in Douglas-fir seedlings[J]. Tree Physiol, 2007, 27(6): 911-919. doi: 10.1093/treephys/27.6.911
    [22] 孙 薇, 王 斌, 楚秀丽, 等. 马尾松容器苗生长和养分性状对磷添加和接种菌根菌的响应及关联[J/OL]. 南京林业大学学报(自然科学版): 1-9[2022-04-12].

    [23] 王亚军, 唐 明, 郭 渊, 等. 外生菌根真菌对杉木的接种效应[J]. 西北植物学报, 2006, 26(9):1900-1904. doi: 10.3321/j.issn:1000-4025.2006.09.026

    [24] 李 娟, 张彦文. 外生菌根菌对东北红豆杉幼苗生长的影响[J]. 林业科技, 2019, 44(4):19-21. doi: 10.19750/j.cnki.1001-9499.2019.04.005

    [25] 孙佳琦, 曹文琪, 冷平生, 等. 接种4种外生菌根真菌对槲树幼苗生长、光合及营养元素含量的影响[J]. 中南林业科技大学学报, 2021, 41(10):67-74,101. doi: 10.14067/j.cnki.1673-923x.2021.10.008

    [26] 彭思利, 王晓燕, 李 剑, 等. 外生菌根真菌接种对干旱胁迫下构树幼苗生长及光合特性的影响[J]. 生态学杂志, 2021, 40(9):2719-2726. doi: 10.13292/j.1000-4890.202109.005

    [27]

    Hu J, Lin X, Wang J, et al. Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L. ) in a sandy loam soil with long-term inorganic fertilization regime[J]. Applied Microbiology & Biotechnology, 2010, 88(3): 781-787.
    [28]

    Bai S L, Li G L, Liu Y, et al. Ostryopsis davidiana seedlings inoculated with ectomycorrhizal fungi facilitate formation of mycorrhizae on Pinus tabulaeformis seedlings[J]. Mycorrhiza, 2009, 19(6): 425-434. doi: 10.1007/s00572-009-0245-2
    [29] 庞圣江, 马 跃, 张 培, 等. 基质配比和缓释肥用量对望天树容器苗的生长效应[J]. 西北林学院学报, 2018, 33(6):66-71. doi: 10.3969/j.issn.1001-7461.2018.06.11

    [30] 庞圣江, 张 培, 马 跃, 等. 白木香容器苗基质配比与缓释肥施用量的生长效应[J]. 东北林业大学学报, 2018, 46(11):12-15. doi: 10.3969/j.issn.1000-5382.2018.11.003

    [31]

    Lan Z C, Bai Y F. Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: critical thresholds and implications for long-term ecosystem responses[J]. Philosophical Transactions of the Royal Society of London:Series B, Biological Sciences, 2012, 367(1606): 3125-3134. doi: 10.1098/rstb.2011.0352
    [32]

    Azcón R, Ambrosano E, Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration[J]. Plant Science, 2003, 165(5): 1137-1145. doi: 10.1016/S0168-9452(03)00322-4
    [33] 赛牙热木·哈力甫, 邓 勋, 宋小双, 等. 外生菌根真菌对植物促生抗逆作用机制研究进展[J]. 世界林业研究, 2021, 34(1):19-24. doi: 10.13348/j.cnki.sjlyyj.2020.0073.y

    [34]

    Marklein A R, Houlton B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems[J]. New Phytologist, 2012, 193(3): 696-704. doi: 10.1111/j.1469-8137.2011.03967.x
    [35]

    Franklin O, Näsholm T, Högberg P, et al. Forests trapped in nitrogen limitation–an ecological market perspective on ectomycorrhizal symbiosis[J]. New Phytologist, 2014, 203(2): 657-666. doi: 10.1111/nph.12840
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2) / Tables(2)

Article views(2317) PDF downloads(68) Cited by()

Proportional views

Effects of Slow-release Fertilizer Addition and Inoculation of Mycorrhizal Fungi on the Growth Traits and Nutrient Status of Cyclobalanopsis gilva Container Seedlings

    Corresponding author: WANG Bin, ylwangbin@sina.com
  • 1. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, Zhejiang, China
  • 2. Qingyuan County Experimental Forest Farm of Zhejiang Province, Qingyuan 323800, Zhejiang, China

Abstract:  Objective To improve the container seedlings cultivation level of Cyclobalanopsis gilva with mycorrhiza. Method Based on the interaction experiments of different slow-release fertilizer addition levels and inoculation of mycorrhizal fungi, the effects of slow-release fertilizer × mycorrhizal fungi on the growth traits and nutrient status of 1-year-old container seedlings of Cyclobalanopsis gilva were analyzed. A split-plot experimental design was used with inoculation of mycorrhizal fungi in the main plot and different slow-release fertilizer addition levels in the sub-plot. The main plot was mycorrhizal treatment, which was divided into two treatments: inoculation (10 mL of Pisolithus tinctorius with a concentration of 36.28 mg·mL−1 was injected into the middle part of the seedling container) and non inoculation. The area was treated with matrix slow-release fertilizer addition, and five slow-release fertilizer addition gradients (1.50, 2.25, 3.00, 3.75, and 4.50 kg·m−3) were set. Results Inoculation of mycorrhizal fungi promoted the growth of 1-year-old C. gilva container seedlings under different slow-release fertilizer addition levels. There was significant interaction between slow-release fertilizer addition and inoculation of mycorrhizal fungi on total biomass and P utilization index of container seedlings. After inoculation with mycorrhizal fungi, growth traits such as seedling height, caliper, sturdiness quotient, total biomass, total root length and root diameter increased by 18.70%, 7.16%, 10.75%, 24.55%, 1.02% and 18.47% compared with that no inoculation, respectively. N content, N uptake and utilization index, P uptake and utilization index increased by 2.04%, 27.10%, 27.67%, 19.72% and 30.52%, respectively, while P content decreased by 2.94%. There were extremely significant differences in growth traits and nutrient status between inoculated and non-inoculated except total root length and N and P contents. Regardless of whether mycorrhizal fungi were inoculated or not, with the increase of slow-release fertilizer addition level, all growth traits increased first and then decreased except root diameter, P content and uptake showed an overall increasing trend. The growth was the best when the slow-release fertilizer addition level was 3 kg·cm−3. The N content and absorption of the container seedlings without mycorrhizal inoculation showed a trend of increasing first and then decreasing, while the N and P utilization indexes decreased first and then increased. There was no obvious change in N content and N absorption. Conclusion Inoculation of ectomycorrhizal fungus with P. tinctorius can promote the growth of C. gilva container seedlings and improve the nutrient utilization efficiency of N and P, and the effect of promoting mycorrhizal growth is more significant under low slow-release fertilizer addition.. In production, inoculation of mycorrhizal fungi can improve the quality of container seedlings and reduce the use of slow-release fertilizer, which is helpful to the cultivation of high quality seedlings of C. gilva and save seedling cost.

  • 土壤有效养分和菌根真菌及其互作对植物生长、根系发育和养分吸收等有重要影响。土壤中外生菌根真菌侵染植物根系,与植物根结合形成的共生体-菌根,能增强植物对土壤中氮和磷等养分的吸收利用,进而促进植物的生长发育和提高植物的抗逆性[1-4]。外生菌根可从根际土壤中吸收NH4+和NO3这2种氮素形态,且可以吸收土壤中游离的氨基酸,将其转运给宿主植物[5-7]。在菌根共生体中,宿主获取的所有磷素几乎全部来自共生真菌[8],接种菌根真菌使宿主从土壤中吸收的磷成倍增加,即使在土壤极度缺磷时,菌根仍能吸收磷[9-10]。菌根促进其共生植物磷吸收的现象,在各种林木及生长环境中被广泛地证实[11]。已有研究表明,施肥和接种菌根菌及其交互作用对油松(Pinus tabuliformis Carr.)、马尾松(P. massoniana Lamb.)、樟子松(P. sylvestris L. var. mongolica Litv.)和刺槐(Robinia pseudoacacia L.)等生长和生理等指标有显著促进作用。

    赤皮青冈(Cyclobalanopsis gilva Oerst.)为壳斗科(Fagaceae)青冈属(Cyclobalanopsis Oerst.)常绿阔叶大乔木,是我国南方地区重要的珍贵用材和生态修复树种,造林用苗需求量较大。近几年,不同学者从基质配比、不同N/P比缓释肥加载等方面对赤皮青冈优质容器苗培育展开研究,结果表明,缓释肥和N/P配比施肥等不同施肥方式均对赤皮青冈幼苗生长有促进作用,同时也有效提高了赤皮青冈苗木质量[12-15];但相对于壳斗科其它树种,赤皮青冈1年生容器苗发芽不整齐,幼苗生长慢仍是其容器苗培育过程中存在的主要问题。壳斗科植物是典型的外生菌根树种,对外生菌根具有较强的依赖性,自然条件下菌根多样性丰富[16],白栎(Quercus fabri Hance)、麻栎(Q. acutissima Carruth.)和青冈栎(C. glauca Oerst.)等壳斗科树种均表现出积极的菌根效应[16-18],但目前关于赤皮青冈接种菌根菌的相关研究尚少,菌根化育苗能否促进赤皮青冈幼苗生长尚不清楚,不同缓施肥条件下接种菌根菌对赤皮青冈幼苗的生长和养分利用效率的影响是否不同也有待研究。本文以赤皮青冈1年生容器苗为试验材料,研究不同缓释肥添加量和接种菌根菌条件下容器苗的生长和养分吸收利用差异,以期为赤皮青冈容器苗合理施肥和菌根化育苗提供科学依据。

    • 试验在浙江省庆元县实验林场(119°01′25″ E,27°38′48″ N)育苗基地钢构大棚内进行,该地属亚热带季风气候,温暖湿润,四季分明,海拔510 m,年均气温17.6 ℃,年均降水量 1721.3 mm,无霜期245 d。供试材料为庆元林木良种基地采集的赤皮青冈种子所育的实生苗。育苗基质为泥炭、谷壳和珍珠岩(体积比为6:1:3)。泥炭pH值为5.8,全N、全P和全K含量分别为14.2、0.7和2.7 g·kg−1。谷壳和珍珠岩在育苗期间主要发挥疏松基质作用,谷壳基本无分解。育苗容器规格为4.5 cm × 10 cm(直径 × 高)的无纺布网袋。所用菌种彩色豆马勃(Pisolithus tinctorius (Pers.) Coker & Couch)从北京百欧博伟生物购买,由中国林业科学研究院亚热带林业研究所培养繁殖。所用缓释肥为美国辛普劳公司生产的爱贝施(Apex)长效控释肥,其全N含量为180 g·kg−1,有效P含量为60 g·kg−1,全K含量为120 g·kg−1,肥效6—7个月。

    • 试验采用裂区试验设计,主区为菌根菌处理,分为接种(LM)和不接种(NM)2个处理。副区为缓释肥加载(F)处理,试验设置5个缓释肥添加梯度,分别为F1(1.50 kg·m−3)、F2(2.25 kg·m−3)、F3(3.00 kg·m−3)、F4(3.75 kg·m−3)和F5(4.50 kg·m−3)。2021年4月中旬,将大棚中培育的赤皮青冈芽苗移栽至5种不同施肥梯度的育苗容器中,每个梯度移栽300株,分区块放置在育苗盘中(每盘64株)进行培养。7月上旬在赤皮青冈容器苗分级分盘育苗前,从每个施肥梯度中随机选取苗高约10 cm的容器苗60株,分成两组,一组接种,一组不接种(即对照),每组30株(3次重复,每重复10株)。采用育苗容器中间部位注射方式,对接种组每株容器苗接种10 mL彩色豆马勃(浓度36.28 mg·mL−1)。接种和不接种容器苗均放置在有间隔的育苗盘中进行培育,不同处理容器苗之间保持1 m以上间隔。容器苗按育苗基地常规育苗流程进行喷灌和遮阳等生产管理。

    • 2021年11月中旬(生长季末),收获所有试验苗木,分别用钢卷尺和游标卡尺测量容器苗的苗高和地径,同时以每重复小区10株为单元进行菌根侵染率、生物量和养分测定。随机选取容器苗细根根段,以形成外生菌根的根段数占观察的总根段数的百分比作为菌根侵染率[19]。将植株根、茎、叶各器官均置于105 ℃烘箱中杀青30 min,再在60 ℃下烘至恒质量,测定其各器官干质量。称取各器官干样,采用H2SO4-H2O2法消煮,分别采用凯氏定氮法和ICP-OES光谱仪(Vista-Mpx,美国Varian公司)测定其氮磷含量。通过根系扫描设备(Expression 10 000XL 1.0,Canada)对不同处理后的根系进行扫描,利用WinRHIZO根系分析软件分析获得根长和根系直径数据。

    • 苗木高径比为苗高(cm)与地径(cm)的比值,N和P含量及吸收量计算参照文献[20],养分利用指数(INU)采用每单位叶片养分所占苗木生物量来衡量[21]

      N、P含量=(叶N、P含量 × 叶干质量 + 茎N、P含量 × 茎干质量 + 根N、P含量 × 根干质量)/(叶干质量 + 茎干质量 + 根干质量)

      N、P吸收量= N、P含量 × (叶干质量 + 茎干质量 + 根干质量)

      N、P利用指数=(叶干质量 + 茎干质量 + 根干质量)/ 叶N、P含量

      采用EXCEL 2019进行数据处理及相关图形制作,利用SPSS 20.0软件进行双因素方差分析和Duncan's检验(α=0.05)。

    2.   结果分析
    • 试验结果显示:LM处理的1年生赤皮青冈容器苗苗高、地径、高径比、总生物量、总根长和根系直径等生长性状相比NM分别增加18.70%、7.16%、10.75%、24.55%、1.02%和18.47%(表1),N含量、N吸收量和N利用指数分别增加了2.04%、27.10%和27.67%,P吸收量和P利用指数分别增加19.72%和30.52%。除P含量降低2.94%外,LM处理对苗木生长性状和养分状况均有促进作用,其中,总生物量、养分吸收量和利用指数增幅较大(≥20%)。从变异系数看,LM处理的苗高、高径比、总根长、N含量、P含量、P吸收量等变异程度相比NM下降0.13%~7.19%,其一致性有所提高;地径、总生物量、根系直径、N吸收量、N利用指数和P利用指数等变异程度增加0.14%~4.80%,其一致性有所降低。

      性状
      Trait
      接种处理
      Treatment of mycorrhizal fungi
      F
      F Value
      不接种
      Non-inoculated
      (NM)
      接种
      Inoculated
      (LM)
      菌根菌
      Mycorrhizal
      (M)
      不同缓释肥添加梯度
      Slow-release fertilizer
      addition(F)
      菌根菌 × 缓释肥添加
      (M × F)
      苗高 Seedling height/cm 20.906±2.959 24.816±2.979 41.434** 15.770** 1.518
      地径 Caliper/mm 3.953±0.182 4.236±0.203 16.392** 1.193 0.916
      高径比 Sturdiness quotient 5.293±0.741 5.862±0.669 13.544** 13.927** 0.521
      总生物量 Total biomass/g 24.728±1.925 30.799±3.361 74.160** 5.280** 3.809*
      总根长 Total root length/cm 144.456±18.435 145.931±14.571 0.091 5.382** 0.356
      根系直径 Root diameter/mm 1.034±0.088 1.225±0.111 26.401** 1.095 0.668
      N含量 N content/(g·kg−1) 9.034±0.992 9.218±1.000 0.293 1.680 1.286
      P含量 P content /(g·kg−1) 2.009±0.296 1.950±0.259 1.083 16.967** 0.742
      N吸收量 N uptake /(g·plant−1) 22.293±2.692 28.334±3.806 37.601** 3.330* 2.119
      P吸收量 P uptake /(g·plant−1) 4.969±0.819 5.949±0.553 22.044** 4.405** 1.048
      N利用指数 N utilization index/g 1.760±0.296 2.247±0.381 18.481** 1.280 2.160
      P利用指数 P utilization index/g 17.616±2.703 22.993±4.631 55.323** 14.852** 5.831**
      注:**和*分别表示P<0.01和P<0.05水平显著。下同。
        Notes: **, * mean significant differences among the values at 0.01 and 0.05 level, respectively.The same blow.

      Table 1.  Variance analysis of growth traits and nutrient status of C. gilva container seedlings

      方差分析表明:接种处理(M)对赤皮青冈容器苗苗高、地径、高径比、总生物量和根系直径等生长性状,N、P吸收量和N、P利用指数等养分状况有极显著影响。不同缓释肥添加梯度(F)对赤皮青冈容器苗苗高、高径比、总生物量和总根长等生长性状及N吸收量、P含量、P吸收量和P利用指数等养分状况有显著或及显著影响。接种菌根菌和缓释肥添加(M × F)仅对赤皮青冈容器苗总生物量和P利用指数有显著或极显著影响。

    • 赤皮青冈容器苗苗高、地径、高径比、总生物量和根系直径等生长性状在不同缓释肥添加梯度下均表现为LM>NM(图1A、B、C、D、F),可见接种菌根菌对不同缓释肥梯度下容器苗的生长有较好的促进作用。总根长F1和F2梯度下表现为NM>LM,F3、F4和F5梯度下表现为LM>NM(图1E),高肥力水平下总根长表现出积极的菌根效应,但差异不显著。NM处理下,赤皮青冈容器苗苗高、地径、高径比、总生物量和总根长呈先升高后降低趋势,F3梯度最高,各指标比相应最小值分别高47.52%、2.82%、42.68%、14.20%和27.63%,苗高和高径比F3与F5梯度无显著差异,但显著高于F1、F2和F4;总根长F3梯度显著高于F5(图1E);地径、总生物量和根系直径各梯度间无显著差异(图1B、D、F)。可见缓释肥梯度对苗高、高径比和总根长影响较大,对地径、总生物量和根系直径影响较小。LM处理下,苗高、地径、高径比、总生物量和总根长等性状随缓释肥添加量增加而变化的总体规律不变,仍以F3梯度最高,各指标比相应最小值分别高28.72%、9.76%、27.46%、33.72%和28.95%。接种菌根菌后,不同施肥梯度间苗高和高径比差异缩小,地径、总生物量和总根长差异增大。

      Figure 1.  Growth difference of C. gilva container seedlings under slow-release fertilizer addition and inoculation of mycorrhizal fungi

    • 接种菌根菌后赤皮青冈容器苗养分利用效率总体增加,但不同养分指标表现不同。N含量和P含量不同缓释肥添加梯度下LM和NM无显著差异,N吸收量、P吸收量和N利用指数均为LM>NM,P利用指数F1~F4梯度LM>NM且差异显著(图2A~F)。无论是否接种菌根菌,随缓释肥添加量增加,P含量和P吸收量整体呈增加趋势;NM处理下N含量和N吸收量随缓释肥添加量增加呈先增加后降低趋势,N利用指数、P利用指数呈先降低后增加的趋势;LM处理下N利用指数、P利用指数变化趋势正好相反,呈先增加后降低趋势,N含量和N吸收量则无明显变化规律。

      Figure 2.  Nutrient difference of C. gilva container seedlings under slow-release fertilizer addition and inoculation of mycorrhizal fungi

      NM处理下,赤皮青冈容器苗N含量和N吸收量分别以F4和F3梯度最高,比相应最小值分别高22.88%和24.72%(图2A、C,P<0.05);P含量和P吸收量以F5梯度最高,比相应最小值分别高44.31%和46.18%(图2B、D,P<0.05); N利用指数F1梯度最高,但不同施肥梯度间差异不显著(图2E);P利用指数F1梯度最高,比最小的F4梯度高44.54%(图2FP<0.05)。相对而言,施肥梯度对容器苗P利用效率的影响更大。LM处理下,容器苗N含量和N吸收量均以F4梯度最高,P含量和P吸收量分别以F5和F4梯度最高,不同施肥梯度间N含量和P吸收量无显著差异,N吸收量F4梯度比F5高34.31%(P<0.05),P含量F5梯度比F1高37.33%(P<0.05);N利用指数F1~F4梯度间无显著差异,F5梯度最小(图2E、F)。接种菌根菌后,不同施肥梯度间N含量、P含量和P吸收量差异缩小,N吸收量、N利用指数和P利用指数差异增大。

    • NM处理下,赤皮青冈容器苗生长性状和养分状况间的联系不紧密,仅苗高与P吸收量、总生物量与P利用指数呈显著正相关(表2),相对于N而言,P的供给水平对赤皮青冈生长影响较大。LM处理下,赤皮青冈容器苗生长性状和养分状况的关联明显增强,其中,苗高和高径比与P吸收量呈显著正相关,总生物量和总根长与N吸收量呈显著正相关,地径、总生物量和总根长与P含量呈显著或极显著负相关,而与N利用指数和P利用指数呈显著或极显著正相关。不接种赤皮青冈容器苗总根长与P含量呈负相关(r =−0.346),接种后其关系进一步增强(r =−0.524,P<0.05),意味着苗木的根营养器官较发达时,特别是菌根菌与根共生形成菌根后,苗木将体内的P含量维持在相对较低的水平,将更多的P元素用于苗木的生长,特别是增加地径(r = −0.668,P<0.01)和总生物量(r = −0.697,P<0.01)。接种后容器苗地径越大,总生物量越高,总根长越长,相应N吸收量越高,N利用指数、P利用指数越大,可见菌根的形成提高了苗木的养分利用效率。

      处理
      Treatment
      性状
      Trait
      苗高
      Seedling height
      地径
      Caliper
      高径比
      Sturdiness quotient
      总生物量
      Total biomass
      总根长
      Total root length
      根系直径
      Root diameter
      不接种
      Non-inoculated(NM)
      N含量 N content 0.154 0.133 0.117 −0.257 −0.069 −0.178
      P含量 P content 0.430 0.274 0.360 0.041 −0.346 0.384
      N吸收量 N uptake 0.455 0.412 0.322 0.455 0.224 −0.158
      P吸收量 P uptake 0.614* 0.442 0.484 0.501 −0.111 0.335
      N利用指数 N utilization index 0.001 −0.122 0.029 0.412 0.232 0.177
      P利用指数 P utilization index −0.096 0.005 −0.114 0.574* 0.383 −0.095
      接种
      Inoculated(LM)
      N含量 N content −0.451 −0.275 −0.362 −0.184 −0.106 0.168
      P含量 P content 0.031 −0.668** 0.326 −0.697** −0.524* −0.123
      N吸收量 N uptake −0.003 0.489 −0.216 0.632* 0.619* 0.062
      P吸收量 P uptake 0.557* 0.167 0.523* 0.256 0.394 −0.259
      N利用指数 N utilization index 0.490 0.781** 0.187 0.770** 0.606* 0.039
      P利用指数 P utilization index 0.427 0.809** 0.094 0.912** 0.803** −0.065

      Table 2.  Correlation analysis of growth traits and nutrient status of C. gilva container seedlings

    3.   讨论
    • 接种合适的外生菌根菌能对植物的生长发育起到明显的促进作用。本研究赤皮青冈容器苗接种彩色豆马勃后,对不同缓释肥添加量下容器苗的苗高、地径、高径比、总生物量和根系直径等均有促进作用,这与对马尾松、杉木(Cunninghamia lanceolate (Lamb.)Hook.)、东北红豆杉(Taxus cuspidate Sieb.)、槲树(Quercus dentate Thunb.)、构树(Broussonetia papyrifera L'Hér. ex Vent.)等苗木研究结果一致[22-26]。接种后赤皮青冈容器苗总根长低肥力水平下(≤2.25 kg·m−3)小于不接种,高肥力水平下(≥3.75 kg·m−3)大于不接种,主要是低肥力下,菌根共生关系强,苗木减少根长而增加根粗,依靠菌丝吸收养分,而高肥力下,菌根共生关系弱,苗木增加根长生长,扩大根系分布范围增加养分吸收能力[27-28]。关于缓释肥对苗木生长和根系发育的影响,不同研究结果不尽相同。赤皮青冈容器苗苗高、生物量和根体积随着缓释肥施用量增加先升高后降低,根长和根系直径缓释肥效应较小,与吴小林等[15]关于赤皮青冈研究结果相同,其根系直径没有显著的缓释肥效应,与庞圣江等关于望天树(Parashorea chinensis Wang Hsie)和白木香(Aquilaria sinensis Spreng.)研究结果一致[29-30]

      菌根真菌能够促进植物对N、P等营养元素的吸收利用,改善植物体的营养状况,增加植物体内的养分含量,提高植物养分利用效率[27-28]。本研究接种菌根菌对赤皮青冈容器苗N、P吸收量和N、P利用指数有显著促进作用,与Hu等[27]和Bai等[28]的研究结果一致,但接种菌根菌对N、P含量无显著影响,与其研究结果不同。结合两两比较结果可见,在适宜的肥力水平下(3 kg·m−3左右),赤皮青冈容器苗N、P含量表现出一定的菌根负效应(接种低于不接种),但该肥力水平下接种菌根菌对容器苗的生长仍为促进作用,可能是接种容器苗因为菌根的存在,未在体内储存过多的养分,而是将养分更多用于干物质累积,以获得更多的生长空间[31-32]。接种后随缓释肥加载量的增加,赤皮青冈容器苗N、P利用指数呈先增加后降低趋势,与不接种正好相反,但在高缓释肥加载量时(4.5 kg·m−3),接种和不接种无显著差异,说明相对偏低的养分环境中菌根的存在改变了植株的养分利用策略[33]

      N、P元素是植物体内重要有机化合物的组成成分,多方面影响着植物的生长发育,二者在吸收利用上也存在着相互作用[34]。接种菌根菌赤皮青冈容器苗生长性状和养分状况间的相关性增强,说明接种后苗木生长对养分的变化更敏感,苗木与菌根菌之间形成较好的共生关系。结合前述分析可知,这种共生关系低肥力下更显著,高肥力下则逐渐减弱。可见培育赤皮青冈容器苗时,相对较低的肥力条件下接种菌根菌可获得较好效果。无论是否接种,不同缓释肥添加量下赤皮青冈容器苗的生长性状与P元素的关系都较密切,说明赤皮青冈育苗过程中对P元素的需求更重要。1年生赤皮青冈养分库构建差异研究也表明其培育过程中需要相对高P的缓释肥[13]。接种前N元素相关养分状况与生长性状间无显著相关性,接种后N利用指数与生长性状关联增强,主要是接种后菌根的形成促进了苗木的生长,提高了苗木对N养分的需求,使N相关养分与生长指标之间的联系更紧密[6,35]

    4.   结论
    • 接种外生菌根菌彩色豆马勃可促进1年生赤皮青冈容器苗生长,低肥力下菌根的促生效应更显著。接种后容器苗苗高、总生物量、根系直径、N吸收量、P吸收量与N利用指数、P利用指数等增幅较大,苗高和高径比的一致性有所提高。缓释肥添加和接种菌根菌对容器苗总生物量和P利用指数有显著的互作效应。无论是否接种菌根菌,随缓释肥添加量增加,容器苗各生长性状均呈先增加后降低趋势,缓释肥添加量3 kg·cm−3时生长表现最好。接种后容器苗N、P养分利用效率明显提高,苗木的生长性状与养分状况间的相关性明显增强。基于对接种菌根菌数据的分析表明,在相对较低的肥力条件下接种菌根菌,有助于培育赤皮青冈优质苗木并节约育苗成本。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return