• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Progress and Prospect of Research in Transgenic Poplar

  • Received Date: 2014-11-27
  • To review the transgenic improvement of poplar, the progress and status of the poplar transgenic research relating to insect resistance, herbicide resistance, biomass traits, stress tolerance, disease resistance, hormone modification, flowering modification and phytoremediation were summarized. The factors influencing Agrobacterium-mediated transformation of poplar were analyzed. Some problems existed in poplar transgenic research and developing direction were also explored.
  • 加载中
  • [1] 苏晓华, 张绮纹, 郑先武, 等. 美洲黑杨(Populus deltoids Marsh)×青杨(P.cathayana Rehd.)分子连锁图谱的构建[J]. 林业科学,1998,34(6):29-37.

    [2]

    Parsons T J, Sinkar V P, Stettler R F, et al. Transformation of poplar by Agrobacterium tumefaciens[J]. Bio/Technology, 1986, 4: 533-536.
    [3]

    Bradshwa H, Stettler R. Molecular genetics of growth and development in Populus[J]. Hereditas, 1940, 26: 367-378.
    [4] 田颖川, 李太元, 莽克强, 等. 抗虫转基因欧州黑杨的培育[J]. 生物工程学报,1993,9(4):291-297.

    [5] 田颖川, 郑均宝, 虞红梅, 等. 转双抗虫基因杂种741毛白杨的研究[J]. 植物学报,2000,42(3):263-268.

    [6] 王学聘, 韩一凡, 戴莲韵, 等. 抗虫转基因欧美杨的培育[J]. 林业科学,1997,33(1): 69-74.

    [7] 饶红宇, 陈 英, 黄敏仁, 等. 杨树NL-80106转Bt基因植株的获得及抗虫性[J]. 植物资源与环境学报,2000,9(2):1-5.

    [8] 李科友, 樊军锋, 赵 忠, 等. 转双价抗虫基因毛白杨无性系85号抗虫性研究[J]. 西北植物学报,2007,27(8):1537-1543.

    [9]

    Zhang B, Chen M, Zhang X, et al. Laboratory and field evaluation of the transgenic Populus alba × Populus glandulosa expressing double coleopteran-resistance genes[J]. Tree Physiology, 2011, 31: 567-573.
    [10] 张 雁, 郭同斌, 潘惠新, 等. 转Bt基因南林895杨抗虫性及对土壤微生物影响分析[J]. 林业科学研究,2012,25(3):346-350.

    [11]

    Genissel A, Leple J C, Millet N, et al. High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp tenebrionis[J]. Molecular Breeding, 2003, 11: 103-110.
    [12]

    Klocko A L, Meilan R, James R R, et al. Bt-Cry3Aa transgene expression reduces insect damage and improves growth in field-grown hybrid poplar[J]. Can J For Res, 2014, 44: 28-35.
    [13]

    Leple J C, Bottino B M, Augustin S, et al. Toxicity to Chrysomela tremulae (Coleoptera:Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor[J]. Molecular Breeding, 1995, 1: 319-328.
    [14] 伍宁丰, 孙 芹, 姚 斌, 等. 抗虫的转AaIT基因杨树的获得[J]. 生物工程学报,2000, 16(2):129-133.

    [15]

    Fillatti J J, Kiser J, Rose R, et al. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector[J]. Nature Biotechnol, 1987, 5: 726-730.
    [16]

    DeBlock M. Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones[J]. Plant Physiol, 1990, 93: 1110-1116.
    [17]

    Brasileiro A, Tourneur C, Leple J C, et al. Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants[J]. Trans Research, 1992, 1: 133-141.
    [18]

    Gullner G, Komives T, Rennenberg H. Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides[J]. J Exp Bot, 2001, 52: 971-979.
    [19]

    Meilan R, Han K, Ma C, et al. The CP4 transgene provides high levels of tolerance to Roundup herbicide in field-grown hybrid poplars[J]. Can J Forest Research, 2002, 32: 967-976.
    [20]

    Li J, Meilan R, Ma C, et al. Stability of herbicide resistance over 8 years of coppice in field-grown, genetically engineered poplars[J]. Western Journal of Applied Forestry, 2008, 23(2): 89-93.
    [21]

    Sewalt VJH, Ni W T, Blount JW, et al. Reduced lignin content and altered lignin composition in transgenic tobacco downregulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase[J]. Plant Physiol, 1997, 115: 41-50.
    [22]

    Li L, Zhou Y, Cheng X, et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation[J]. Proc Natl Acad Sci USA, 2003, 100: 4939-4944.
    [23]

    Meyermans H, Morreel K, Lapierre C. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-egulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis[J]. J Biol Chem, 2000, 275: 36899-36909.
    [24]

    Franke R, McMichael CM, Meyer K, et al. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase[J]. Plant J, 2000, 22: 223 -234.
    [25]

    Baucher M, Chabbert B, Pilate G, et al. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar[J]. Plant Physiol, 1996, 112 (4) : 1479-1490.
    [26]

    Zhong R, Morrison III W H, Himmelsbach D S, et al. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants[J]. Plant Physiol, 2000, 124: 563-577.
    [27]

    Rouque-Rivera R, Talhelm A F, Johnson D W, et al. Effects of lignin-modified Populus tremuloides on soil organic carbon[J]. Journal of Plant Nutrition and Soil Science, 2011, 174: 818-826.
    [28]

    Thakur A K, Aggarwal G, Sribastaba D K. Genetic modification of lignin biosynthetic pathway in Populus ciliata Wall. via Agrobacterium-mediated antisense CAD gene transfer for quality paper production[J]. Natl Acad Sci Lett, 2012, 35(2): 79-84.
    [29]

    Coleman H D, Canovas F M, Man H, et al. Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula × alba) (717-1B4)[J]. Plant Biotechnology Journal, 2012, 10: 883-889.
    [30]

    Lu S, Li Q, Wei H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proc Natl Acad Sci USA, 2013, 110: 10848-10853.
    [31]

    Li C, Wang X, Lu W, et al. A poplar R2R3-MYB transcription factor, PtrMYB152, is involved in regulation of lignin biosynthesis during secondary cell wall formation[J]. Plant Cell Tiss Organ Cult, 2014, 119(3): 553-563.
    [32]

    Payyavula R S, Tschaplinski T J, Jawdy S S, et al. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus[J]. BMC Plant Biol, 2014, 14(1): 265-278.
    [33]

    Ko J H, Kim H T, Hwang I, et al. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar[J]. Plant Biotechnology Journal, 2012, 10: 587-596.
    [34]

    Wang H Z, Xue Y X, Chen YJ, et al. Lignin modification improves the biofuel production potential in transgenic Populus tomentosa[J]. Industrial Crops and Products, 2012, 37: 170-177.
    [35]

    Stout A T, Davis A A, Domec J C, et al. Growth under field conditions affects lignin content and producitivity in transgenic Populus trichocarpa with altered lignin biosynthesis[J]. Biomass and Bioenergy, 2014, 68: 228-239.
    [36] 刘凤华, 郭 岩, 谷冬梅, 等. 转甜菜碱醛脱氢酶基因植物的耐盐性研究[J]. 遗传学报,1997,24(1):54-58.

    [37]

    Li Y, Su X, Zhang B, et al. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance[J]. Tree Physiology, 2009, 29: 273-279.
    [38]

    Du N, Liu X, Li Y, et al. Genetic transformation of Populus tomentosa to improve salt tolerance[J]. Plant Cell Tiss Organ Cult, 2012, 108: 181-189.
    [39]

    Han M S, Noh E W, Han S H. Enhanced drought and salt tolerance by expression of AtGSK1 gene in poplar[J]. Plant Biotechnol Rep, 2013, 7: 39-47.
    [40]

    Tang R J, Yang Y, Yang L, et al. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane[J]. Plant, Cell and Environment, 2014, 37: 573-58.
    [41]

    Benedict C, Skinner J S, Meng R, et al. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp[J]. Plant, Cell Environ, 2006, 29: 1259-1272.
    [42]

    Behnke K, Ehlting B, Teuber M, et al. Transgenic, non-isoprene emitting poplars don't like it hot[J]. Plant J, 2007, 51: 485-499.
    [43] 赵世民, 祖国诚, 刘根齐, 等. 通过农杆菌介导法将兔防御素NP-1基因导入毛白杨(P. tomentosa)[J]. 遗传学报,1999,26(6):711-714.

    [44]

    Liang H, Catranis C M, Maynard C A, et al. Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides[J]. Biotechnol Lett, 2002, 24: 383-389.
    [45] 孟 亮,李红双,金德敏, 等. 转几丁质酶基因黑杨的获得[J]. 生物技术通报,2004,3:48-51.

    [46]

    Huang Y, Liu H, Jia Z, et al. Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens[J]. Tree Physiology, 2012, 32: 1313-1320.
    [47] 金 慧,栾雨时. 转录因子在植物抗病基因工程中的研究进展[J]. 中国生物工程杂志,2010,30(10):94-99.

    [48]

    Levee V, Major I, Levasseur C, et al. Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense[J]. New Phytologist, 2009, 184: 48-70.
    [49]

    Tuominen H, Sitbon F, Jacobsson C, et al. Altered growth and wood characteristics in transgenic hybrid Aspen expressing Agrobacterium fumefaciens T-DNA indoleacetic acid-biosynthetic genes[J]. Plant Physiol, 1995, 109: 1179-1189.
    [50]

    Nilsson O, Moritz T, Sundberg B, et al. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation[J]. Plant Physiol, 1996, 112(2): 493-502.
    [51]

    Han K M, Dharmawardhana P, Arias R S, et al. Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus[J]. Plant Biotechnology Journal, 2010, 1-17.
    [52]

    Eriksson M E, Israelsson M, Olsson O, et al. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length[J]. Nat Biotech, 2000, 18: 784-788.
    [53]

    Busov V B, Meilan R, Pearce D W, et al. Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from Poplar that regulates tree stature[J]. Plant Physiol, 2003, 132: 1283-1291.
    [54]

    Rottmann W H, Meilan R, Sheppard L A, et al. Diverse effects of overexpression of LEAFY and PTLF,a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis[J]. Plant J, 2000, 22: 235-245.
    [55]

    Bohlenius H, Huang T, Charbonnel-Campaa L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 2006, 312: 1040-1043.
    [56]

    Shen L, ChenY, Su X, et al. Two FT orthologs from Populus simonii Carriere induce early flowering in Arabidopsis and poplar trees[J]. Plant Cell Tiss Organ Cult, 2012, 108: 371-379.
    [57]

    Elorriaga E, Meilan R, Ma C, et al. A tapetal ablation transgene induces stable male sterility and slows field growth in Populus[J]. Tree Genetics & Genomes, 2014, 10: 1583-1593.
    [58]

    Doty S L, James C A, Moore A L, et al. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees[J]. Proc Natl Acad Sci USA,2007, 104(43): 16816-16821.
    [59]

    Lyyra S, Meagher RB, Kim T, et al. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury[J]. Plant Biotechnol J, 2007, 5: 254-262.
    [60]

    Ivanova L A, Ronzhina D A, Ivanov L A, et al. Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil[J]. Plant Biology, 2011, 13: 649-659.
    [61]

    Cobbett C S. Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiol, 2000, 123: 825-833.
    [62] 王关林, 方宏筠. 植物基因工程[M]. 北京:科学出版社,2002.

    [63]

    Coleman G D, Ernst S G. In vitroshoot regeneration of Populus deltoides: effect of cytokinin and genotype[J]. Plant Cell Rep, 1989, 8: 459-462.
    [64]

    Han K H, Meilan R, Ma C, et al. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus)[J]. Plant Cell Rep, 2000, 19: 315-320.
    [65]

    Leple J C, Brasileiro AC M, Michel M F, et al. Transgenic poplars:expression of chimeric genes using four different constructs[J]. Plant Cell Reports, 1992, 11: 137-141.
    [66]

    Huetteman C A, Preece J E. Thidiazuron: A potent cytokinin for woody culture[J]. Plant Cell Tiss Organ Cult, 1993, 33(2): 105-119.
    [67]

    Yevtushenko D P, Misra S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L.× P. maximowiczii A. Henry[J]. Plant Cell Rep, 2010, 29: 211-221.
    [68]

    Howe G T, Goldfarb B, Strauss S H. Agrobacterium mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants[J]. Plant Cell Tiss Organ Cult, 1994,36:59-71.
    [69]

    Godwin I, Todd G, Lioyd F B, et al. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species[J]. Plant Cell Reports, 1991, 9: 671-675.
    [70]

    Wu H X, Sparks C, Amoah B, et al. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat[J]. Plant Cell Rep, 2003, 21: 659-668.
    [71] 姚 叶, 唐 琪, 李江艳, 等. 杨树基因启动子的克隆及功能研究进展[J]. 山东林业科技,2012,(5):121-125.

    [72]

    Han K H, Ma C P, Strauss S H. Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar[J]. Transgenic Research, 1997, 6: 415-420.
    [73]

    Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31: 686-688.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(4137) PDF downloads(1874) Cited by()

Proportional views

Progress and Prospect of Research in Transgenic Poplar

  • 1. Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China

Abstract: To review the transgenic improvement of poplar, the progress and status of the poplar transgenic research relating to insect resistance, herbicide resistance, biomass traits, stress tolerance, disease resistance, hormone modification, flowering modification and phytoremediation were summarized. The factors influencing Agrobacterium-mediated transformation of poplar were analyzed. Some problems existed in poplar transgenic research and developing direction were also explored.

Reference (73)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return