Pattern of Biological Soil Crust and Its Driving Factors under Artemisia ordosica in Mu Us Sandy Land

ZHANG Jun-hong1, WU Bo2, JIA Zi-yi3, CUI Li-qiang2, LI He2, ZHANG Su-hong3, YANG Wen-bin2, GAO Dabuxilatu4
(1. Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100091, China; 2. College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China; 3. Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; 4. Mu Us Sabina Nature Reserve, Uxin Banner, Erdos 017300, Inner Mongolia, China)

Abstract: The distribution of biological soil crust under Artemisia ordosica in the Mu Us Sandy land is studied by means of line transect sampling, and the pattern of biological soil crust and its driving factors are analyzed. The results show that the thickness of biological soil crust under Artemisia ordosica is uneven. The maximum thickness, 0.84 cm, occurs at the position of 20 cm from the basal root. Outward from the position, the thickness of biological soil crust reduces in ring by a rate of 0.07 cm every 10 cm. The radius of biological soil crust is longer southeastward than that in the other three directions, while that northwestward is shorter. The biological soil crust is the thickest southeastward and thinnest northwestward. The analysis shows a significant correlation between the distribution of litterfall and biological soil crusts under Artemisia ordosica, suggesting litterfall is an important factor to accelerate the development of biological soil crust. The pattern of litterfall is controlled by the local wind regime and the canopy shape of Artemisia ordosica.

Key words: Mu Us Sandy land; Artemisia ordosica; biological soil crust; litterfall
生物结皮对降水再分配过程的影响

研究区位于毛乌素沙地中部

研究对象

材料与方法

研究方法

结果与分析

表

1 20

11

1.2

2.1
2.2

图6显示了生物结皮厚度随距油蒿根部距离的变化，表明随着距油蒿根部距离的增加生物结皮厚度下降速度在变缓。东南方向生物结皮分布半径均值为100 cm，其中在距油蒿根部20 cm时，生物结皮厚度只有16 cm。生物结皮平均厚度只有5 cm。东南方向生物结皮最厚，而西方向上生物结皮分布半径长于其他方向，东南方向上生物结皮厚度均比距根部20 cm处的生物结皮厚度大值均出现在距油蒿根部10 cm，生物结皮厚度平均每10 cm下降0.3 cm，至距油蒿根部80 cm处下降2.1 cm。

2.3

表3和表4给出了单位面积枯落物质量。图7显示了5 cm×5 cm小样方内单位面积枯落物质量，P<0.01。表3和表4 (P>0.05)。
6

$6 \times 10^{-2} \text{ g} \cdot \text{cm}^2$, 0.73 $\times 10^{-2} \text{ g} \cdot \text{cm}^2$, 2.58 $\times 10^{-2} \text{ g} \cdot \text{cm}^2$, 1.85 $\times 10^{-2} \text{ g} \cdot \text{cm}^2$, 30 cm2, 20 cm2 (3)

2.

$0.11 \times 10^{-2} \text{ g} \cdot \text{cm}^2$, 10 cm2, 70 cm2, 0.2 \text{ g}$, 0.1 \text{ g}, 0.05 \text{ g}, 0.02 \text{ g}$, 0.01 \text{ g}, 0.001 \text{ g}$.

3.

20 cm, 4 cm, 20 cm, 414 cm, 414 cm, 10 cm, 3 cm.

4.

$y = 0.1918x + 0.4739$.

2.4.

20 cm, 4 cm, 20 cm, 414 cm, 414 cm, 10 cm, 3 cm.

3.

14%, 13%, 32%, 51%.

2.

图4

3.

表1

4.

表4

3.

图4

4.

图4

2.

图3

3.

图3

2.

图3

3.

图3

2.

图3

3.

图3

2.

图3

3.

图3

2.

图3

3.

图3
林业科学研究所第二卷

西两方向出现的频率最小，均为8%。

研究区全年平均风速为1.79 m·s⁻¹，正南方向风速最大，为2.19 m·s⁻¹，其次是正北方向2.18 m·s⁻¹，东北方向风速最小，为1.19 m·s⁻¹。

油蒿植株长期受北向风的影响，造成其西北方枝条分布变短，密度降低，而与主导风向相反的东南方向枝条则得到较好发育，枝条较长，密度大。

油蒿植冠下枯落物主要来自油蒿的枯枝落叶，枝叶密度最大的东南方向相应的得到最多的枯落物，西北方向枝条密度小，加上主导风向的吹散作用，使一部分西北方向上的枯落物转移到东南方向；同时，由图4油蒿植冠半径与生物结皮分布半径的线形关系表4不同季节风向、风速分布情况

<table>
<thead>
<tr>
<th>方向</th>
<th>春风向频率/%</th>
<th>风速/(m·s⁻¹)</th>
<th>夏风向频率/%</th>
<th>风速/(m·s⁻¹)</th>
<th>秋风向频率/%</th>
<th>风速/(m·s⁻¹)</th>
<th>冬风向频率/%</th>
<th>风速/(m·s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>东北</td>
<td>15</td>
<td>1.77</td>
<td>14</td>
<td>1.12</td>
<td>12</td>
<td>0.97</td>
<td>15</td>
<td>0.87</td>
</tr>
<tr>
<td>正东</td>
<td>7</td>
<td>1.29</td>
<td>9</td>
<td>1.38</td>
<td>11</td>
<td>0.94</td>
<td>5</td>
<td>1.28</td>
</tr>
<tr>
<td>东南</td>
<td>13</td>
<td>2.31</td>
<td>13</td>
<td>1.79</td>
<td>13</td>
<td>1.67</td>
<td>6</td>
<td>1.43</td>
</tr>
<tr>
<td>正南</td>
<td>15</td>
<td>2.97</td>
<td>16</td>
<td>2.12</td>
<td>12</td>
<td>1.81</td>
<td>6</td>
<td>1.18</td>
</tr>
<tr>
<td>西南</td>
<td>11</td>
<td>2.01</td>
<td>12</td>
<td>1.82</td>
<td>7</td>
<td>1.23</td>
<td>6</td>
<td>1.23</td>
</tr>
<tr>
<td>西北</td>
<td>8</td>
<td>1.88</td>
<td>9</td>
<td>1.46</td>
<td>8</td>
<td>1.37</td>
<td>9</td>
<td>1.76</td>
</tr>
<tr>
<td>正北</td>
<td>11</td>
<td>2.00</td>
<td>9</td>
<td>1.48</td>
<td>14</td>
<td>1.77</td>
<td>19</td>
<td>1.98</td>
</tr>
<tr>
<td>东北</td>
<td>22</td>
<td>2.72</td>
<td>18</td>
<td>1.98</td>
<td>22</td>
<td>2.03</td>
<td>35</td>
<td>2.05</td>
</tr>
</tbody>
</table>

于西北方向枝条较短，富集枯落物的能力弱，而东南方向枝条较长，下部枝条匍匐于地面，富集枯落物的能力较强，加剧了东南、西北方向上的枯落物分布的差异，造成油蒿植株下枯落物分布半径东南方向长于其它方向，西北方向短于其它方向，而且东南方向单位面积枯落物质量高于其它方向，西北方向低于其它方向。油蒿植株下枯落物呈圆环状分布，由内向外枯落物逐渐减少。

研究发现，枯落物分布与油蒿植株形态关系密切。图5显示：油蒿植冠面积与枯落物分布面积的关系。按椭圆分别计算油蒿植冠面积和枯落物分布面积，二者具有显著的线性相关关系（F=36.8，R²=0.6776），表明油蒿植冠形态通过影响枯落物的分布从而对生物结皮的发育产生影响。

3 结论与讨论

3.1 油蒿植株下生物结皮的分布格局

本研究发现，油蒿植株下生物结皮厚度分布不均匀，生物结皮厚度的最大值出现在距油蒿根部20 cm处，20 cm以外生物结皮厚度逐渐降低；并且，东、东北、西南、西北4个方向上生物结皮厚度的分布格局是一致的。因此，从生物结皮厚度的角度看，图5：油蒿植冠面积与枯落物分布面积的线形关系

y=0.84x-17.053

R²=0.4659

油蒿植冠半径/cm

0 10 20 30 40 50 60 70 80 90 100

生物结皮半径/cm

0 20 40 60 80 100

y=0.54x-163.76

R²=0.6776

植冠面积/cm²

0 1000 2000 3000 4000

枯落物面积/cm²

0 1000 2000 3000 4000

y=0.54x-163.76

R²=0.6776

植冠面积/cm²

0 1000 2000 3000 4000 5000 6000 7000 8000

枯落物面积/cm²
3.2 干旱半干旱地区生物结皮层藓类

常庆瑞，张克斌

使得生物结皮的分布而对生物结皮的分布产生影响

油蒿植株下生物结皮分布格局成因分析

张志强，等

使得生物结皮的分布而对生物结皮的分布产生影响

参考文献