Litter’s Reserve and Water-Holding Capacity for Major Secondary Forest Communities in Changbai Mountains

ZHENG Jin-ping 1,2, GUO Zhong-ling 2, XU Cheng-yang 1, FAN Chun-nan 2, PANG Sheng-jiang 2, LI Bing 2

(1. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; 2. Forestry College of Beihua University, Jilin 132013, Jilin, China)

Abstract: The litter’s reserve and water-holding capacity were investigated by the methods of field survey and litter soaking experiments for major secondary forest communities in Bajiaizi Forestry Bureau of Yanji, Jilin Province. The results showed that the litter reserve of all communities ranged form 4.67 t·hm$^{-2}$ to 5.13 t·hm$^{-2}$, with a rank of deciduous broad-leaved forest > Asian white birch forest > Korean pine broad-leaved forest > mixed forest. The reserves of the undecomposed litter were more than that of the semi-decomposed litter, and occupied about 60% of the total. The water absorption strength varied significantly among different litter types, the fastest was the semi-decomposed litter, followed by broad-leaved litter, needle-branches litter, and grass litter, while that of the broad-branches litter, miscellany litter, needle-leaves were relatively slow. The maximal water-holding rate and the maxi-
mal water-holding capacity were significant different among different litter types, and the maximal water-holding rate followed the order of miscellany > grass > coniferous needles > broad-leaves > semi-decomposition > coniferous branches > broad-branches, and the maximal water-holding capacity followed the order of semi-decomposition > broad-leaved > broad-branches > coniferous needles > coniferous branches > miscellany > grass. The maximal water-holding rate of all communities ranged from 291.53% to 364.56%, and water-holding rate followed the order of Asian white birch forest > deciduous broad-leaved forest > mixed forest > Korean pine broad-leaved forest. The maximal water-holding capacity of all communities ranged from 13.64 t·hm⁻² to 18.00 t·hm⁻², and with the same order for water holding rate. The litter soaking experiments showed that the water-holding rate and water-holding capacity increased with the soaking time, following a logarithmic curve (W = a ln t + b), and fitting results were very significantly.

Key words: secondary forest; litter; reserve; water-holding capacity

森林枯落物是由森林生态系统中植物地上部分器官或组织凋死，其后堆置而成，处于林分植物层与土壤层之间的植物残体，包括枝、叶、花、果、皮、种子等[1]。森林枯落物是森林生态系统养分的主要储存，在林分的更新与生长上，土壤动物和微生物的栖息和养分以及蓄水等方面有着重要作用[2-4]，特别是作为森林水源涵养的第二层次，枯落物层由于结构疏松，能有效增加地表粗糙度，防止水土流失和增加土壤水分下渗，透水性和持水能力均较高，在植被水文生态效益和保持水土等方面倍受重视[5-6]，因此在调落物层积累降水能力[7]、持水特性[8-15]及土壤生态功能[16-17]等方面开展了大量研究。

红松阔叶林是我国东北东部山区地带性森林植被，由于多年来大规模的人工干扰和采伐利用，原始林面积已急剧缩小，大多次为生林和伐后林。目前对于红松阔叶林及其次生群落的研究多集中于群落结构特征[18]，枯落物储量及动态[19]及分解[20-21]等方面，对其枯落物持水特征的研究较少。本研究以吉林延边八家子林业局阔叶红松林及其主要次生林群落为对象，通过野外调查及室内浸水法对各群落枯落物储量、组成及其持水特性进行比较分析。

1 研究地概况

研究地点集中在八家子林业局，该局位于吉林省东南部延边朝鲜族自治州境内，地理坐标为128°17′15″～128°58′40″E，42°26′36″～42°51′24″N，气候属温带半湿润气候，年均降水量420～470 mm，年均气温4.8℃，土壤以棕色森林土为主。植被属长白山植物区系，地带性森林群落为阔叶红松林，由于多年来受各种干扰的影响，主要以次生林群落为主。主要群落类型为白桦林、落叶阔叶林、杂木林、红松阔叶林以及蒙古栎等;乔木树种主要包括红松（Pinus koraiensis Sieb. et Zucc.）、紫椴（Tilia amurensis Rupr.）、色木槭（Acer mono Maxim.）、蒙古栎（Quercus mongolica Fisch.）、白桦（Betula platyphylla Suk.）以及鱼鳞云杉（Picea jezoensis Carr.）、臭松（Abies nephrolepis (Trautv.) Maxim.）等;灌木植物以毛榛子（Corylus mandshurica Maxim.）、白桦（Lonicera ruprechtiana Regel）、胡枝子（Lespedeza bicolor Turcz.）等占优势;草本植物以莎草（Cyperus rotundus Linn.）、羊胡子苔草（Carex calitriches V. Krecz.）、细杆兰（Convallaria keiskei Meq.）、木贼（Equisetum hiemale L.）、山茄子（Brachybotrys paridiiformis Maxim.）、欧洲蕨（Pteridium aquilinum （L.）Kuhn）等为主。

本研究共设置调查样地12块，样地基本情况见表1。

根据各调查样地树种组成，将群落类型分为白桦林、杂木林、落叶阔叶林和红松阔叶林4种类型。各群落样地海拔位于700～1000 m之间，坡度相对平缓;郁闭度、平均胸径、平均树高以及材积状况较为接近;采伐后恢复时间均在20年以上。

2 研究方法

群落特征调查采用标准地法，每块样地面积为30 m×30 m，利用网格法划分为36个5 m×5 m的小样方，记录每一样方内所有乔木树种种类、胸径、树高等;灌木和草本植物的调查，分别于样地内均匀布设面积为2 m×2 m和1 m×1 m的调查样方各10个，调查内容包括物种名、平均高度、株数(多度)以及盖度等。枯落物存量的调查采用收割法，分别于每个草本植物调查样方的中心，设置面积为0.5 m×0.5 m的取样样方各1个;枯落物的收集首先利用砍刀、枝剪等工具将样方边界内外枯落物全部断
由于枯落物持水特性的研究在野外条件下受到降水量及持续时间、林分密度、林冠透水特性、山地坡度和土壤孔隙度等因素的共同影响，因此研究者多采用室内浸水法，将枯落物浸水 24 h 的持水量和持水率作为最大值。7,9,22,23

本研究亦采用室内浸水法研究枯落物的持水特征，将取回的每一样方的枯落物样品在实验室中进行分选，按枯落物的分解程度首先分为未分解物和半分解物，再将未分解的细分为针叶树种枯落枝（简称“针枝”），以下同）、针叶树种枯落叶（针叶）、阔叶树种枯落枝（阔枝）、阔叶树种枯落叶（阔叶）以及落叶草（草）和杂类（花、果、皮、苔藓、昆虫残体及虫粪等）6 种类型，然后将分选出的 840 个样品烘干、称质量后，分别编号置于网眼为 0.5 mm 的尼龙网袋中，使其全部没入水中浸泡，浸泡时间梯度为 0.5 h, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 16 h, 24 h, 制备出浓判断不滴水即刻称质量，持水特征指标按下列公式计算。

\[\text{枯落物持水量} = \frac{\text{枯落物持水量}}{\text{枯落物持水量}} \times 100\% \]

\[\frac{\text{枯落物持水量}}{\text{枯落物持水量}} \times 100\% \]

3 结果与分析

3.1 枯落物组成及现存量

调查统计后得到不同群落的枯落物组成及现存量情况（见表 2）。

<table>
<thead>
<tr>
<th>群落类型</th>
<th>未分解物</th>
<th>半分解物</th>
<th>群落现存量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>针枝</td>
<td>侧枝</td>
<td>针叶</td>
</tr>
<tr>
<td>白桦林</td>
<td>0.03 ± 0.02</td>
<td>1.11 ± 0.34</td>
<td>0.05 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>(0.60)</td>
<td>(22.2)</td>
<td>(1.00)</td>
</tr>
<tr>
<td>杂木林</td>
<td>0.13 ± 0.15</td>
<td>1.18 ± 0.35</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>(2.78)</td>
<td>(25.28)</td>
<td>(0.64)</td>
</tr>
<tr>
<td>落叶林</td>
<td>0.12 ± 0.16</td>
<td>0.99 ± 0.26</td>
<td>0.26 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>(2.34)</td>
<td>(19.30)</td>
<td>(5.07)</td>
</tr>
<tr>
<td>阔叶林</td>
<td>0.20 ± 0.15</td>
<td>0.89 ± 0.12</td>
<td>0.42 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>(4.27)</td>
<td>(19.02)</td>
<td>(8.97)</td>
</tr>
</tbody>
</table>

注：表格内的针枝、侧枝、针叶、叶片和草物为分别为针叶树种枯落枝、阔叶树种枯落枝、针叶树种枯落叶、阔叶树种枯落叶、枯落草和花、果、枝皮及杂物的简称，同下；另外括号内数值为各枯落物类型占总现存量的百分数。
由于森林群落类型的组成、结构等不同，导致其枯落物组成和数量存在较大差异[21]。由表2可以看出，不同群落类型枯落物存量介于4.67～5.13 t·hm⁻²之间，其中各群落平均值表现为落叶阔叶林最高（5.13 t·hm⁻²），其次为白桦林（5.00 t·hm⁻²）、红松阔叶林（4.68 t·hm⁻²）和杂木林（4.67 t·hm⁻²）相对略低且相接近。

从不同群落枯落物的组成来看，所有群落枯落物未分解物均高于半分解物，占现存总量的60%左右，其中落叶阔叶林未分解物所占比率最高（67.06%），其次为白桦林（65.6%）、杂木林（62.74%）和红松阔叶林（57.05%）。半分解物所占比例如表所示，表现出红松阔叶林最高，落叶阔叶林最低，这可能与枯落物的分解速率针叶树种低于阔叶树种有关[20-21]。在未分解物的组成中，各群落除以阔叶树种枯落物为主，占总存量的21.37%～39.40%，并且以阔叶类群落所占比例相对较大，红松阔叶林相对较小，这与各群落的植被组成等因素密切相关；其次为白桦树种枯落物，占总存量的19.02%～25.28%；再次为针叶树种枯落物，针叶树种枯落物，占总存量的1.00%～8.97%和0.60%～4.27%；而杂类和枯枝草所占比例相对较小，二者总量所占比例不足4%。

3.2 不同枯落物类型持水特征

3.2.1 不同群落类型浸水过程的吸水强度

枯落物的浸水过程受环境条件的影响，如浸水初期，吸水速率高，随着浸水时间增加，吸水速率显著下降并趋向于零[22]。表3比较不同枯落物类型在浸水过程中吸水量的变化及差异，将不同群落类型在各时段的持水量占最大持水量的百分比率情况（吸水强度）进行比较，结果见表3。

<table>
<thead>
<tr>
<th>时间/h</th>
<th>半分解物/%</th>
<th>未分解物/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>种类</td>
<td>针叶</td>
</tr>
<tr>
<td>0.5</td>
<td>68.93 ± 3.30</td>
<td>62.18 ± 4.54</td>
</tr>
<tr>
<td>1</td>
<td>77.63 ± 2.61</td>
<td>72.47 ± 3.12</td>
</tr>
<tr>
<td>1.5</td>
<td>82.51 ± 1.79</td>
<td>77.98 ± 3.33</td>
</tr>
<tr>
<td>2</td>
<td>85.05 ± 2.15</td>
<td>81.85 ± 2.32</td>
</tr>
<tr>
<td>4</td>
<td>87.61 ± 2.12</td>
<td>85.90 ± 1.77</td>
</tr>
<tr>
<td>6</td>
<td>89.47 ± 2.08</td>
<td>87.95 ± 1.28</td>
</tr>
<tr>
<td>8</td>
<td>91.50 ± 1.98</td>
<td>90.58 ± 1.19</td>
</tr>
<tr>
<td>12</td>
<td>93.03 ± 0.78</td>
<td>93.35 ± 1.38</td>
</tr>
<tr>
<td>16</td>
<td>96.29 ± 1.79</td>
<td>96.10 ± 1.41</td>
</tr>
<tr>
<td>24</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

由表3可以看出，不同群落类型在浸水过程中的吸水强度差异较大，其中半分解物样品的持水量增长最快，浸水0.5 h的吸水强度为68.93%，1.5 h超过80%；其次为阔叶树种枯落物和针叶树种枯落物，0.5 h的吸水强度均达到60%以上，2 h超过80%；杂类和针叶树种枯落物的吸水强度随浸水时间的增加相对快慢，0.5 h的吸水强度均不足50%，且吸水强度超过80%的时间草类浸水6 h，阔叶树种枯落物12 h，而杂类和针叶树种枯落物则均需12 h以上。

3.2.2 不同群落类型最大持水率和最大持水量

枯落物的持水能力可通过其持水率来衡量，受枯落物的自身性质影响，持水能力在不同群落类型间有较大差异[24]。由图1可以看出，不同群落类型的最大持水率表现为杂类＞枯落＞针叶类枝叶＞阔叶类枝叶＞未枝叶类枝叶＞半分解＞针叶枝叶枝叶枝叶＞阔叶枝叶。
枯落枝，平均值分别为 652.20%、630.05%、441.12%、372.38%、353.33%、248.62% 和 223.08%，经方差分析得出，同一枯落物类型持水率存在极显著的差异（$F = 6.15 > F_{0.01,6}$）。

在不同群落类型中，同种枯落物类型的最大持水率除杂类和针叶树种枯落枝外，其它类型基本相近。通过对杂类组成的观察发现，红松阔叶林的杂类中以红松的树皮、松果为主，而其它群落杂类中这类成分所占比例则较少，显然这是造成差异的主要原因；而导致针叶最大持水率在各群落间的差异则不是特别清楚，是否与在不同群落环境条件下的不同针叶种枯落枝表面油脂层的影响有关，从而影响了它们的持水能力，还有待于进一步的研究。

由图2可以看出，不同枯落物类型的最大持水量以半分解（6.25 t·hm$^{-2}$）和阔叶树种枯落枝（5.74 t·hm$^{-2}$）相对较高，其次为阔叶树种针叶枝（2.37 t·hm$^{-2}$），而针叶树种针叶枝（0.56 t·hm$^{-2}$）、针叶树种针落枝（0.30 t·hm$^{-2}$）、杂类（0.26 t·hm$^{-2}$）和枯落草（0.19 t·hm$^{-2}$）相对较小。由于受储藏量影响，其大小顺序与最大持水率不同，经方差分析得出不同枯落物类型间仍呈极显著差异（$F = 29.39 > F_{0.01,6}$）。

此外，在不同群落类型中，同种枯落物类型的最大持水量也存在差异（图2）。结合表2，可知枯落物类型持水率和持水量在不同群落类型中的差异变化与其储量在不同群落类型中的变化基本一致，说明各枯落物类型储量是导致群落间其最大持水量存在差异的主要因素。

3.3 不同群落枯落物浸水过程中持水量和持水率变化

不同凋落物类型浸水时间与持水率（%）的关系的实验结果（见图3～4）。

由图3～4可以看出，不同群落类型枯落物持水率和持水量均随浸泡时间的增加呈对数型增长，各群落类型枯落物持水率和持水量均表现出在浸水的前4 h内上升最快，均超过其最大值的80%，前4 h后持水率和持水量则缓慢下降。其中，白桦林（85.72%）、杂木林（83.81%）和落叶阔叶林（82.19%）次之，红松阔叶林（78.10%）最少，白桦林（80.18%）最多。

不同群落类型枯落物持水率表现为白桦林 > 落叶阔叶林 > 杂木林 > 红松阔叶林，最大持水率分别为 364.56%、328.61%、314.77% 和 291.53%，导致各群落持水率的差异应与其枯落物组成关系密切（$F = 29.39 > F_{0.01,6}$）。由上述分析可知，各群落枯落物的组成以半分解和阔叶最大，二者之和所占的比例白桦林最高（73.80%），红松阔叶林最低（64.32%），落叶阔叶林（71.15%）和杂木林（71.66%）较为接近（见表2），而且二者最大持水率除于现有材料的量较多的杂类、草和针叶外，明显高于阔叶和针叶，因此其持水量的比例大小程度上决定了群落的持水率水平。

虽然群落枯落物的持水量取决于自身现存质量和持水率的大小，但由于本研究中不同群落枯落物现
存氧较为接近，尤其是白桦林与落叶阔叶林之间和杂木林与红松阔叶林之间的差异均较小，因此不同群落枯落物的持水量变化与持水率术语一致，仍表现为白桦林 > 落叶阔叶林 > 杂木林 > 红松阔叶林，最大持水量分别为 18.00、16.86 与 14.71 千克/hm² 与 13.64 千克/hm²。通过分析，发现持水率 W_r（%）和持水量 W_h（t·hm⁻²）与浸水时间 t（h）关系可用一次对数方程进行拟合，拟合方程为：

$$W = a \ln t + b \quad (a, b \text{ 为常数})$$

经拟合的方程相关系数值均在 0.98 以上，呈极显著相关性（$P < 0.001$）。

通过分析，发现持水率 W_r（%）和持水量 W_h（t·hm⁻²）与浸水时间 t（h）关系可用一次对数方程进行拟合，拟合方程为：

$$W = a \ln t + b \quad (a, b \text{ 为常数})$$

经拟合的方程相关系数值均在 0.98 以上，呈极显著相关性（$P < 0.001$）。

表 4 不同群落类型枯落物持水量（W_r）与持水量（W_h）与浸泡时间（t）的关系

<table>
<thead>
<tr>
<th>群落类型</th>
<th>持水量（W_r）与浸泡时间（t）</th>
<th>拟合方程</th>
<th>P</th>
<th>持水量（W_h）与浸泡时间（t）</th>
<th>拟合方程</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>白桦林</td>
<td>$W_r = 31.009\ln t + 249.04$</td>
<td>0.982 6</td>
<td><0.001</td>
<td>$W_h = 1.5505\ln t + 12.452$</td>
<td>0.982 6</td>
<td><0.001</td>
</tr>
<tr>
<td>杂木林</td>
<td>$W_r = 27.942\ln t + 240.74$</td>
<td>0.982 8</td>
<td><0.001</td>
<td>$W_h = 1.3049\ln t + 11.243$</td>
<td>0.982 8</td>
<td><0.001</td>
</tr>
<tr>
<td>落叶阔叶林</td>
<td>$W_r = 33.328\ln t + 234.40$</td>
<td>0.983 7</td>
<td><0.001</td>
<td>$W_h = 1.7097\ln t + 12.025$</td>
<td>0.983 7</td>
<td><0.001</td>
</tr>
<tr>
<td>红松阔叶林</td>
<td>$W_r = 25.783\ln t + 221.75$</td>
<td>0.989 9</td>
<td><0.001</td>
<td>$W_h = 1.1628\ln t + 10.001$</td>
<td>0.989 9</td>
<td><0.001</td>
</tr>
</tbody>
</table>

4 结论与讨论

森林枯落物现存量主要取决于枯枝落叶的凋落物输入量、分解速度和积累年限[20–28]，其中分解组成对凋落物输入有显著影响，一般为阔叶树凋落物输入量最高，针阔混交其次，针叶树相对较低[28]。本研究中 4 种群落类型在林分环境条件和发育年龄上相近，枯落物现存量介于 4.67～15.13 千克/hm²之间，表现为落叶阔叶林 > 白桦林 > 杂木林 > 红松阔叶林。不同群落类型枯落物组成差异导致凋落物输入量的影响是导致落叶阔叶林和白桦林枯落物现存量高于红松阔叶林的主要原因。此外，群落发育年龄对枯落物现存量积累也存在一定的影响。表现枯落物现存量随林龄增加而增大[20]。本研究枯落物现存量结果与黑龙江东北林业大学幅区实验林场内的天然次生水曲柳（*Fraxinus mandshurica* Rupr.）林（**D = 23.2 cm**）和蒙古椴（*Quercus mongolica* Fisch.）林（**D = 20.8 cm**）相比略低，但白桦林（**D = 10.2 cm**）相比略高[25]，但白桦林优势区原始枯落物白桦林枯落物现存量的 50%[21]。

通过对不同枯落物类型的浸水实验发现，不同枯落物类型的吸水强度、最大吸水量和最大持水量均有较大差异，其中吸水强度以半分解物吸水最快，其次为阔叶树种枯落物和针叶树种枯落物，而半分解草 > 阔叶树种枯落物 > 杂草，而针叶树种枯落物相对较少；最大吸水率表现为杂草 > 枯草和针叶树种枯落物相对较高，其次为阔叶树种枯落物 > 半分解物，针叶树种枯落物和阔叶树种枯落物相对较高，与黄礼隆[20]对川西亚高山常绿针叶林的实验结果相似；最大持水量量表现为半分解物最高，其次为阔叶树种枯落物 > 阔叶树种枯落物 > 杂草和枯草。相关研究结果表明，枯落物表面的吸附水占比最大持水量的绝大部分，其单位质量的枯落物表面面积越大，最大持水率越高[24]，因此不同群落类型最大持水率的差异应与单位质量的表面积的差异有关，而枯落物的最大持水量则是其自身性质和储量的共同作用。

受各群落枯落物组成、数量和质量等因素对群落枯落物层持水特征的影响和控制，不同群落枯落物组成类型的持水特性实验结果发现，不同群落类型枯落物持水率和持水量随浸水时间的增加均呈对数增长，其中在 4 h 内吸水上升最快，且超过最大值的 80% 后增长趋于平缓，其主要原因应与半分解物和阔叶树种枯落物在各群落中所占的比重大，且吸水速度快，4 h 内均超过最大值的 85%，对群落的持水特征产生重要影响有关。在浸水过程中，不同群落枯落物持水率和持水量均表现为白桦林 > 落叶阔叶林 > 杂木林 > 红松阔叶林、最大持水率除红松阔叶林外高于我国森林群落的平均水平（309.54%）[27]，最大持水量变化范围在 13.64～18.00 千克/hm²之间。通过分析各群落浸水过程的方程，拟合得出，各群落持水率和持水量均符合 $W = a \ln t + b$ 的对数关系，拟合结果极显著，与常雅军等[9]、金耀强等[8]、王云琦等[22]研究结果一致。