DOI:10.13275/j.cnki.lykxyj.2020.04.016

滇中亚高山森林林下植被和凋落物 生态化学计量特征

张乃木¹, 王克勤¹, 宋娅丽^{1*}, 张雨鉴¹, 杜云祥²

(1. 西南林业大学生态与环境学院,云南昆明 650224; 2. 新平彝族傣族自治县水利局,云南玉溪 653400)

摘要:[目的]了解磨盘山区域森林生态系统典型林分林下植被层和凋落物层各组分的 C、N、P 化学计量比格 局,探究物种与器官对林下植被层和凋落物层 C、N、P 化学计量特征的影响,以期为森林生态系统养分再分 配提供理论参考。[方法]选取滇中亚高山 5 种典型森林为研究对象,通过野外采集不同森林林下植被和凋落 物样品,对其林下植被层各器官和凋落物层各组分 C、N、P 生态化学计量特征进行研究。[结果]5 种林分的 林下植被层(灌木叶、茎和根,草本地上和地下部分)和凋落物层(未分解层、半分解层、完全分解层)的 C 含量变幅分别为 410.17~561.08、81.47~625.80 mg·g⁻¹,N含量分别为 3.07~15.89、9.87~17.50 mg·g⁻¹, P 含量分别为 0.35~0.90、0.37~0.93 mg·g⁻¹。灌木层 C、N、P 含量除云南松林外均表现为叶>根>茎,草本层 的 C、P 表现为地下部分>地上部分,N 含量则相反;凋落物层 N、P 含量表现为完全分解层>半分解层> 未分解层,C 含量与之相反。[结论]滇中亚高山典型森林中 5 种林分林下植被层生长比较缓慢,受到 N 和 P 的同时限制;凋落物分解速率偏慢,养分循环能力较低。因此,在森林抚育措施中,可考虑适当保护林下植 被,提高土壤肥力,维持其长期稳定生产力。 关键词:化学计量比;器官;林下植被层;凋落物层

中图分类号: S718.5 文献标志码: A 文章编号: 1001-1498(2020)04-0127-08

林下植被作为构成森林生态系统的重要部分, 同时具有促进养分循环和降低水土流失量等功能, 在维护生态系统多样性和稳定性方面有突出作用。 森林生态系统林地内养分循环结构组成会伴随着灌 木树龄而变化,且灌木与草本的竞争关系日益加 强,对林下植被的生长发育以及养分元素的分配有 重要影响^[1-2]。凋落物在森林生态系统中可视为植 物生长发育和土壤养分循环之间的连接纽带,同时 凋落物的养分高低间接反应了林地的生产力水平^[3]。 研究表明,森林在生长发育过程中需要大量的氮磷 钾等养分元素,其中,所需养分中,有70%~ 80%的总氮量、65%~80%的总磷量和30%~40% 的总钾量是通过森林凋落物分解、归还到土壤的过 程而获得^[4]。 目前,有关森林生态系统中林下植被和凋落物 各组分的化学计量特征已有较多研究。一方面,有 研究表明,在植物生长发育过程中,植物叶片的 N/P 临界比值对植物所处环境和其所需养分的供应 状况有制约作用,其比值可作为表征这种供应状况 的指标,且对植物间的不同器官而言,其 N/P 的临 界比值间差异突出^[5]。Kerkhoff 等^[6] 通过对大量种 子植物的研究发现,同种植物各器官之间的 N 含 量和 P 含量以及 N/P 之间存在相关性,同时 N 含 量和 P 含量在木本和草本植物之间存在差异; Freschet 等^[7] 的研究进一步说明,C、N、P 含量在植物的 叶、茎、根之间具有相关关系。另一方面,Zhang 等^[8] 对不同森林生态系统中超过 400 种植物的凋落 物进行研究发现,同一种森林类型的年凋落物总量

*通讯作者: 宋娅丽,博士,讲师.主要研究方向: 生态系统过程与功能. E-mail: songyali19851205@sina.com

收稿日期: 2020-02-17 修回日期: 2020-06-01

基金项目:云南省高校优势特色重点学科(生态学)建设项目(050005113111);西南林业大学科研启动基金(111443)

差异显著,不同森林生态系统中的季节性凋落物形 态多样,各森林类型间差异明显。

以上研究是对植物养分循环、凋落物分解特征 等方面进行分析,多集中于乔木,但对不同分解层 凋落物的 C、N、P 含量及化学计量特征以及林下 植被层各器官与凋落物之间的相关关系研究较 少[9-10]。因此,本研究以地处同一气候区域、林龄 相近、覆盖度高的5种滇中亚高山典型森林生态系 统常绿阔叶林、滇油杉 (Keteleeria evelyniana Mast) 林、高山栎 (Ouercus semicarpifolia Smith)林、华 山松 (Pinus armandii Franch)林、云南松 (Pinus vunnanensis Franch)林为研究对象,研究该森林生 态系统内林下植被层器官(灌木叶、茎、根及草本 地上和地下部分)和凋落物层(未分解层、半分解 层、完全分解层)的C、N、P含量及化学计量 比,了解磨盘山区域森林生态系统典型林分林下植 被层和凋落物层各组分的 C、N、P 化学计量比格 局,探究物种与器官对林下植被层和凋落物层C、 N、P 化学计量特征的影响, 以期为森林生态系统 养分再分配提供理论参考。

1 研究区概况

研究地区位于云南省玉溪市磨盘山国家森林定 位研究站,海拔1260.0~2614.4 m,地处低纬度 高原,属云南热带与亚热带的过渡气候带,是典型 的中亚热带气候,光热条件良好,降水丰沛,区域 年平均气温15℃,年均降水量1050 mm,具体自 然条件参见文献[11]。

此研究选取的常绿阔叶林下灌草主要有:毛蕊 红山茶 (Camellia mairei (Lévl.) Melch)、光叶柯 (Lithocarpus mairei (Schottky) Rehder), 南烛 (Vaccinium bracteatum Thunb)、 碎米花 杜 鹃 (Rhododendron spiciferum Franch)、 沿 阶 草 (Ophiopogon bodinieri Levl)等, 郁闭度约 12%; 滇 油杉林下灌草主要有:火棘叶柃 (Eurva pyracanthifolia Hsu)、油茶 (Camellia oleifera Abel)、云南含笑 (Michelia yunnanensis Franch. ex Finet et Gagnep.), 紫茎泽兰 (Eupatorium adenophorum (Sprengel) R.M.King & H. Robinson)、锈叶杜鹃 (Rhododendron siderophyllum Franch)、四脉金芽 (Eulalia quadrinervis (Hack.) Kuntze) 等, 郁闭度约 8%; 高山栎林下灌草主 要有: 白栎 (Quercus fabri Hance)、白鹃梅 (Exochorda racemosa (Lindl.) Rehd)、地檀香

(Gaultheria forrestii Diels)、厚皮香 (Ternstroemia gymnanthera (Wight et Arn.) Beddome)、南烛、火 棘叶柃等, 郁闭度约 10%; 华山松林下灌草主 要有:杨梅 (Myrica rubra Siebold et Zuccarini)、菝 葜 (Smilax china Linn)、粗叶悬钩子 (Rubus alceaefolius Poir)、紫茎泽兰、沿阶草等,郁闭度 约 5%;云南松林林下灌草主要有:南烛、碎米 花杜鹃、槲栎 (Quercus aliena Blume)等,郁闭度 约 8%^[12]。

2 研究方法

2.1 样地设计

试验在磨盘山内的 5 种典型林分常绿阔叶林 (CL)、滇油杉林(DY)、高山栎林(GS)、华 山松林(HS)和云南松林(YN)中随机选取 3 块 面积为 20 m×20 m 的样地,合计 15 块样地,样地 情况见表 1。在每个样地内沿对角线方向,设置 5 个 2 m×2 m 的小样方和 5 个 1 m×1 m 的小样方, 用于调查林下灌木层、草本层及凋落物现存量的 测定。

2.2 野外取样及室内样品测定

野外测定以国家林业局森林资源清查的操作规 范为标准,对样地内符合标准(胸径(DBH)≥5 cm) 的林木进行测定,记录物种名、胸径和树高^[13]。灌 木叶按照东南西北的方向选取发育良好、结构完整 且无病虫害的叶、根和茎,参照史军辉等^[14]分径 级,灌木茎分<1、1~2、2~4、>4 cm 4 个径级, 灌木根分<1、1~5、5~10、>10 cm 4 个径级,各 个小样方内的4 个径级按每个植株各采集一份根样 进行混合;草本层分为地上和地下部分进行采集; 以上样品分别取 200 g 左右带回实验室。对森林地 表的凋落物,按其结构和分解状态划分为3 个分解 等级:未分解、半分解和已分解层^[15],在小样方内 按以上3 层进行采集,每个样方按层次分别取 200 g。

采集的样品在 65 ℃ 下烘干至恒质量,采用粉碎 机粉碎后过 100 目筛,样品装入塑封袋后供元素测 定。碳含量用重铬酸钾-外加热硫酸氧化法 (GB 7657—87)进行测定、氮含量用半微量凯氏定氮法 (LY/T 1269—1999)测定,磷含量用钼锑抗比色法 (LY/T 1270—1999)进行测定。

2.3 数据处理与分析

实验数据用 Excel 2019 和 SPSS22 统计分析软件进行处理分析,对不同森林类型林下植被层各器

森林类型 Forest type	样地编号 Plotnumber	林龄 Age/a	海拔 Altitude/m	坡向 Slope aspect	坡度 Slope gradient/(°)	郁闭度 Canopy density	密度 Density/ (株·hm ⁻²)	平均胸径 Average DBH/cm	平均树高 Average height/m	土壤类型 Soil category
常绿阔叶林(CL) Evergreen broad-leaf forest	1	16	2 258	西北 NW	13	0.85	4 614	9.5	9.0	
	2	14	2 193	西北 NW	15	0.90	4 742	9.0	9.2	红壤
	3	16	2 236	西北 NW	16	0.87	4 528	8.9	8.9	
演训长 林(DV)	1	18	2 288	西北 NW	10	0.65	285	11.3	12.1	
俱油杉林(DY) Keteleeria evelyniana forest	2	19	2 375	西北 NW	12	0.70	314	11.0	15.0	红壤
	3	18	2 292	西北 NW	14	0.61	301	12.1	14.0	
高山栎林(GS) Quercus semicarpifolia	1	14	2 208	东北 NE	16	0.92	1 037	9.0	4.5	
	2	15	2 373	东北 NE	14	0.88	1 131	10.0	4.0	黄棕壤
forest	3	15	2 281	东北 NE	15	0.90	1 072	10.6	4.0	
	1	19	2 119	东北 NE	18	0.60	3 578	12.3	10.9	
华山松林(HS) Pinus armandii forest	2	18	2 178	东北 NE	20	0.65	3 387	11.0	10.3	红壤
<i>T thus armanati</i> forest	3	19	2 156	东北 NE	19	0.73	3 433	12.1	9.9	
三卤松林(VN)	1	22	2 193	西北 NW	13	0.73	1 428	10.2	8.4	
Pinus yunnanensis	2	24	2 158	西北 NW	15	0.82	1 389	12.5	11.0	红壤
forest	3	22	2 236	西北 NW	12	0.75	1 495	11.0	9.0	

表 1 磨盘山各森林类型研究样地概况 Table 1 Geophysical characteristics of the investigating plots in each forest type in Mopan mountain

官和不同凋落物层 C、N、P 含量及化学计量比采 用单因素方差分析(One-Way ANOVA),并用最 小显著差异法(LSD)和 Tamhane's T2 法进行多重 比较,采用双因素方差分析法(Two-way ANOVA) 分析林型和器官对灌木层、草本层和凋落物层 C、 N、P 含量及化学计量特征的影响,显著性差异检 验在 0.05 水平。

3 结果分析

3.1 林下植被各器官和凋落物层 C、N、P 含量

由表 2 可看出:林下植被层各器官之间 C、 N、P 含量均存在显著差异 (P<0.05),不同林分林 下植被层的平均 C 含量常绿阔叶林最高(515.63 mg·g⁻¹),滇油杉林最低(433.90 mg·g⁻¹)。灌木 层中,除云南松林外,其他 4 种林分各器官的 C 含量差异显著 (P<0.05),其含量均表现为叶> 根>茎。草本层中,高山栎林和华山松林间 C 含量 差异不显著,但与其他 3 种林分的 C 含量差异显 著 (P<0.05),5种林分的 C 含量均表现为地下部 分>地上部分。不同林分间凋落物的 C 含量存在差 异,但同一林分不同凋落物分解层间差异显著 (P< 0.05),均表现为未分解>半分解>完全分解。

不同林分下,灌木层不同器官的平均N含量

均表现为叶>根>茎;草本层中,滇油杉林的平均 N含量最低(9.36 mg·g⁻¹),同一林分地上部分与 地下部分平均N含量均差异显著(P<0.05),均为地 上部分>地下部分。同一林分的平均P含量,在灌 木层为叶>根>茎,不同林分间差异显著(P< 0.05),草本层为地下部分>地上部分;在凋落物 中,高山栎林的平均N含量最高(13.72 mg·g⁻¹), 云南松林的最低(12.79 mg·g⁻¹),同一林分不同 凋落物分解层的N和P含量差异显著(P<0.05), 均为完全分解>半分解>未分解。

3.2 林下植被各器官和凋落物层 C、N、P 化学计量比

表 3 表明:不同林分林下植被层,常绿阔叶林 和滇油杉林的 C/N 与其他 3 种林分差异显著 (P< 0.05),且显著高于其他 3 种林分;对比不同器官, C/N 和 C/P 均 为 茎 >根 >叶, N/P 为 叶 >根 >茎 (HS 除外),草本层 C/N 为地下部分>地上部 分,与 C/P 和 N/P 相反,且均差异显著 (P<0.05)。 凋落物层中,不同林分间凋落物的 C/N 在未分解 层和完全分解层间存在差异,在半分解层间差异不 显著,但均为未分解>半分解>完全分解。不同林 分间滇油杉林未分解和完全分解凋落物的 C/P 最 高,显著高于另外 4 种林分;同一林分不同分解层 凋落物的 C/P 差异显著,也表现为未分解>半分解>

表 2 5 种林森林类型林下植被层和凋落物层 C、N、P 含量 Table 2 Contents of C, N and P in undergrowth and litter layers of five forest types

			灌木 Shrub		草本	Herb	凋落物 Litter				
组分 Components	林分 Forest	叶 leaf	茎 Stem	根 Root	地上 Aboveground	地下 Underground	未分解 Undecomposed	半分解 Semi decomposition	完全分解 Complete decomposition		
	CL	561.08±3.64 Ab	507.23±3.03 Ad	520.04±2.60 Bc	493.91±4.45 Ae	495.89±5.85 Ae	625.80±3.01 Aa	407.52±2.25 Af	81.47±1.21 Dg		
	DY	489.11±4.58 Db	424.18±3.30 Bd	434.98±2.50 Cc	410.17±1.05 De	411.04±3.53 De	596.05±5.35 Ba	379.44±3.39 Cf	133.25±1.96 Bg		
С	GS	547.38±3.98 Ab	498.72±5.96 Ad	522.57±4.89 Bc	460.51±3.68 Bf	478.78±4.45 Be	598.93±6.43 Ba	394.41±4.31 Bg	92.82±0.16 Ch		
	HS	553.37±5.92 ABb	499.03±5.99 Ad	518.90±4.09 Bc	454.32±7.53 Bf	474.10±4.17 Be	570.42±4.49 Ca	376.65±5.52 Cg	129.40±2.93 Bh		
	YN	503.40±3.97 Cc	492.93±2.65 Ac	538.30±4.54 Ab	435.62±2.94 Cd	440.07±4.57 Cd	576.00±5.17 Ca	406.00±3.45 ABe	152.00±2.73 Af		
	CL	15.89±0.27 Aa	3.68±0.08 Df	5.91±0.10 Ce	11.59±0.27 Bc	8.53±0.31 Ad	11.32±0.22 Ac	13.38±0.19 Ab	15.89±0.24 Ba		
	DY	11.84±0.12 Cc	3.07±0.04 Eg	4.65±0.07 Df	11.61±0.23 Bc	7.12±0.03 De	9.87±0.09 Dd	12.76±0.07 Ab	17.50±0.01 Aa		
Ν	GS	11.70±0.15 Ccd	6.72±0.09 Ag	7.50±0.08 Af	11.43±0.06 Bc	8.39±0.14 Be	11.03±0.11 ABd	14.14±0.17 Ab	15.99±0.28 Ba		
	HS	10.32±0.25 Dd	6.16±0.07 Bg	6.92±0.11 Bf	12.89±0.06 Ab	9.88±0.11 Be	10.87±0.12 Bc	13.25±0.07 Ab	16.80±0.18 ABa		
	YN	13.88±0.14 Bc	5.36±0.06 Cf	7.52±0.08 Ae	12.83±0.13 Ab	7.42±0.06 Ce	10.30±0.11 Cd	13.66±0.14 Ab	14.41±0.15 Ca		
	CL	0.90±0.01 Ab	0.60±0.01 Af	0.63±0.01 Ae	0.62±0.01 Aef	0.72±0.01 Bc	0.55±0.01 Ag	0.65±0.01 Ad	0.93±0.01 Aa		
	DY	0.61±0.01 Cb	0.43±0.01 Cd	0.45±0.01 Dd	0.46±0.01 Cd	0.54±0.01 Cc	0.37±0.01 Be	0.54±0.01 Cc	0.72±0.01 Ca		
Р	GS	0.73±0.01 Bb	0.56±0.01 Bcd	0.58±0.01 Bcd	0.51±0.01 Bd	0.63±0.01 Bc	0.51±0.02 Ad	0.63±0.01 ABc	0.92±0.02 Aa		
	HS	0.59±0.01 Dc	0.35±0.01 Ef	0.50±0.01 Cd	0.45±0.01 Ce	0.66±0.01 Cb	0.49±0.01 Ad	0.57±0.01 BCc	0.79±0.02 Ba		
	YN	0.56±0.01 Dc	0.37±0.01 De	0.37±0.01 Ee	0.45±0.01 Cd	0.54±0.01 Ac	0.51±0.01 Ac	0.66±0.01 Ab	0.89±0.01 Aa		

注:CL:常绿阔叶林:DY:滇油杉林;GS:高山栎林;HS:华山松林;YN:云南松林。不同小写字母表示同一森林类型不同器官或层次间差异显著(P<0.05),不同大写字母表示同一器官或层次不同森林类型间差异显著(P<0.05),下同。

Notes: Different small letters indicate that there are significant differences among different organs or levels of the same forest type, and different capital letters indicate that there are significant differences among different forest types of the same organ or level; the same below.

表 3 5 种林森林类型林下植被层和凋落物层化学计量比

Table 3 Stoichiometric ratio of understory vegetation layer and litter layer of five forest types

			灌木 Shrub		草本	Herb		凋落物 Litter	
组分 Component	林分 Forest	叶 Leaf	茎 Stem	根 Root	地上 Aboveground	地下 Underground	未分解 Undecomposed	半分解 Semi decomposition	完全分解 Complete decomposition
	CL	35±0.46 De	135±2.59 Aa	88±1.02 Bb	43±2.77 Ad	58±1.58 Ab	55±1.17 Bc	30±2.29 Ae	5±0.27 Df
	DY	41±0.72 Cf	138±2.71 Aa	94±1.75 Ab	35±0.72 Be	58±1.17 Ac	60±0.21 Ad	30±0.23 Ag	8±0.11 Bh
C/N	GS	48±0.45 Be	74±0.15 Da	70±0.78 Db	40±0.49 Af	57±0.40 Ac	54±1.01 BCd	28±0.19 Ag	6±0.18 Ch
	HS	53±1.73 Ac	81±1.17 Ca	75±1.80 Cb	35±0.42 Be	48±0.64 Bd	52±0.16 Cc	28±0.57 Af	8±0.17 Bg
	YN	36±0.46 De	91±0.58 Ba	89±0.90 CDb	34±0.45 Bf	59±0.71 Ac	56±0.70 Bd	30±0.07 Ag	11±0.17 Ah
	CL	622±7.15 Ee	853±8.65 Db	825±9.09 Eb	802±12.14 Cc	691±3.29 Cd	1 132±3.43 Ba	629±7.16 ABe	88±1.69 Df
	DY	804±19.82 Cd	989±14.31 Cb	964±17.47 Cb	885±16.73 Bc	764±9.46 ABd	1 627±40.16 Aa	699±10.65 Ae	185±7.14 Af
C/P	GS	749±17.16 Dc	897±12.12 CDb	895±14.76 Db	882±19.76 Bb	760±7.59 Bc	1 184±87.20 Ba	624±52.55 ABd	101±3.00 CDe
	HS	1 022±19.30 Ac	1 412±52.19 Aa	1 048±22.66 Bc	1 006±24.73 Ac	724±14.30 BCd	1 171±22.83 Bb	660±8.97 ABd	164±0.42 Be
	YN	907±19.68 Bcd	1 313±48.21 Ba	1 438±19.92 Aa	968±10.27 Ac	813±31.45 Ad	1 128±97.81 Bb	615±1.21 Be	171±2.61 Bf
	CL	18±0.23 Cb	6±0.10 De	9±0.18 Ed	19±0.38 Dab	12±0.36 Cc	20±0.37 Ba	21±0.25 Aa	17±0.89 Cb
	DY	19±0.18 Bc	7±0.09 De	10±0.09 Dd	25±0.27 Bb	13±0.06 Bd	27±0.25 Aa	24±0.21 Ab	24±0.26 Ab
N/P	GS	16±0.27 Dbc	12±0.16 Cc	13±0.34 Cc	23±0.26 Ca	13±0.18 Bc	22±0.25 Ba	22±0.23 Aa	17±0.56 Cb
	HS	18±0.24 BCd	17±0.39 Ad	14±0.46 Be	29±0.33 Aa	15±0.18 Ae	22±0.49 Bbc	23±0.61 Ab	21±0.48 Bc
	YN	25±0.50 Ac	14±0.55 Bde	20±0.03 Ad	29±0.39 Aa	14±0.59 Be	20±0.25 Bc	21±0.02 Ab	16±0.01 Cc

完全分解。

3.3 林下植被各器官和凋落物层 C、N、P 含量及化 学计量比变异分析

表 4 表明:不同林分类型、器官及二者的交互 作用对林下植被层和凋落物层化学计量特征的影响 各不相同,林下植被层 C、N 含量均是器官对其影响最大, F 值分别为 285.07 和 1 378.30,而 P 含量 主要受林分类型影响, F 值为 594.91。林下植被层 的 C/N、C/P、N/P 均受器官影响最大, F 值分别为 2 214.11、225.93、633.94,差异均达显著 (P<0.05)。

表 4 林下植被层 C、N、P 含量及化学计量比双因素分析

Table 4 Two factor analysis of C, N, P content and stoichiometric ratio in understory vegetation

变异类型	自由度 Degree of	$C/(mg \cdot g^{-1})$		$N/(mg \cdot g^{-1})$		$P/(mg \cdot g^{-1})$		C/N		C/P		N/P	
	freedom	F	Р	F	Р	F	Р	F	Р	F	Р	F	Р
森林类型 Forest types	4	264.30	< 0.05	95.17	0.05	594.91	< 0.05	262.82	< 0.05	216.92	< 0.05	205.17	< 0.05
器官 Organs	4	285.07	< 0.05	1 378.30	< 0.05	488.93	< 0.05	2 214.11	< 0.05	225.93	< 0.05	633.94	< 0.05
森林类型×器官 Forest types×Organs	16	12.46	< 0.05	50.24	< 0.05	31.86	< 0.05	122.19	< 0.05	31.53	< 0.05	25.33	< 0.05

表 5 表明: 凋落物层中,不同的分解层是影响 凋落物 C、N、P 含量及化学计量比 C/N、C/P 最 大的因素,其*F* 值分别为 19 041.76、311.12、341.24 和 4 997.51、1 039.91,均差异显著 (P<0.05);而 对 N/P 影响最大的因素为林分类型,其 F 值为 16.50。

表 5 凋落物层 C、N、P 含量及化学计量比双因素分析

Table 5 Two factor analysis of C, N, P content and stoichiometric ratio in litter layer

变异类型	自由度 Degree of	$C/(mg \cdot g^{-1})$		$N/(mg \cdot g^{-1})$		$P/(mg \cdot g^{-1})$		C/N		C/P		N/P	
	freedom	F	Р	F	Р	F	Р	F	Р	F	Р	F	Р
森林类型 Forest types	4	11.77	< 0.05	3.47	< 0.05	27.96	< 0.05	11.13	< 0.05	16.01	< 0.05	16.50	< 0.05
凋落物 Litterfall	2	19 041.76	< 0.05	311.12	< 0.05	341.24	< 0.05	4 997.51	< 0.05	1 039.91	< 0.05	14.59	< 0.05
森林类型×凋落物 Forest types×Litterfall	8	46.18	<0.05	6.46	< 0.05	1.70	>0.05	6.72	< 0.05	7.88	< 0.05	1.76	>0.05

4 讨论

4.1 5种森林类型林下植被及凋落物层 C、N、P 含量特征

在植物体干物质的组成中,C元素是最主要的 元素,同时植物的生长还受到限制性元素N、P及 其相互作用的影响,这3种元素含量之间的相互动 态平衡及其化学计量特征是土壤肥力和植物生产力 的直接影响因素^[16-17]。本研究中,5种森林类型 下,灌木层和草本层的C含量平均值分别为507.41、 455.44 mg·g⁻¹,均高于刘立斌等^[18]研究的喀斯特次 生林下灌木层和草本层C含量平均值(440.80 和434.20 mg·g⁻¹),同时也高于全球植物叶片 C元素的平均含量(464 mg·g⁻¹)^[19],其原因可能 是地理气候因素的影响,磨盘山属于北亚热带气候 和南亚热带气候的过渡地区,光照良好,昼夜温差

幅度较大,降水较多,具有较好的C储量能力, 使其灌木层和草本层的生物量处于较高水平。本研 究中,5种林分的林下植被层平均N含量为8.91 mg·g⁻¹, 平均 P 含量为 0.55 mg·g⁻¹, 均显著低于全 球尺度的 N 和 P 平均含量 (20.10、1.99 mg·g⁻¹)^[20] 和中国区域 700 多种植物的 N、P平均含量 (19.70、1.46 mg·g⁻¹)^[21],这可能是由于本研究区域 较高的平均降雨量 (1050 mm) 造成具有强移动性 有效态 N 淋溶作用增强的缘故^[22]。此外,由于研 究区内各林分的土壤类型以山地红壤和黄棕壤为 主,2种土壤的特点是含有较多的铁、铝氧化物和 较强的固 P 能力,导致植物内的 P 有效性偏低^[23]。 相比于乔木层,林下植被层的 N、P 含量略有差 异, 乔木层的 N 含量为 9.46 mg·g^{-1[11]}, 高于灌木 层(8.08 mg·g⁻¹) 而低于草本层(10.17 mg·g⁻¹), P 含量(0.83 mg·g⁻¹)均高于灌木层(0.55 mg·g⁻¹)

和草本层(0.56 mg·g⁻¹),表明乔木层的生长在一 定程度上对灌木层具有抑制作用。Busse 等^[24]对林 下植被进行了长期的控制试验,结果表明,林下植 被层在乔木层生长的前 20 年内与其在养分和水分 等方面存在竞争关系。由于乔木层影响了灌木层的 光合作用,使灌木生长受到抑制,而草本则更容易 接受乔木叶片缝隙中的阳光,将养分用于植物的快 速生长,增加其竞争力^[25];乔木对林下植被层造成 一定程度限制的同时,林下植被也对乔木树苗的光 利用有一定的限制作用,从而限制了森林的更新^[26],

凋落物层的C含量平均值为368.01 mg·g⁻¹, 低于赵畅等^[27]在茂兰喀斯特地区林下凋落物的 C含量平均值(388.70 mg·g⁻¹),这是由于树种的 不同导致各凋落物的分解速率存在差异,表现出随 着凋落物分解C含量呈显著下降趋势^[28]。凋落物 层的平均N、P含量分别为13.41、0.65 mg·g⁻¹,高 于喀斯特地区(11.81、0.29 mg·g⁻¹)^[18]。凋落物层 表现为未分解层C含量最高,完全分解层最低, 而N、P含量与之相反,这可能是由于全N、全 P在凋落物分解时的释放滞后于质量损失,凋落物 在分解时其含有的可溶性糖、有机碳等物质会随着 凋落物的分解而快速流失,表现为凋落物质量损失 明显,因而C含量逐渐减少的同时全N、全P含 量相对增加^[27]。

4.2 5 种森林类型林下植被及凋落物层 C、N、P 化 学计量比特征

植物的 C/N、C/P 可以表征植物对营养的利用 能力^[29]。本研究中,5种林分林下植被层的平均 C/N(65)和 C/P(921)均高于广西杉木人工林的 C/N (32.98)和 C/P(552.57)^[30],同时低于贵州喀斯特次 生林林下植被层的 C/N(93.92) 和 C/P(1 844.81)^[18]。 对比广西人工林,本研究中,5种林分林下灌木层 各器官的 C/N 和 C/P 较高,体现了 5 种林分林下 植物对养分较高的利用效率,同时也反映出5种林 分林下植被层生长比较缓慢。植物的 N/P 作为判断 影响生长发育受限情况的重要指标,对植物养分水 平具有指示性^[31]。Güsewell^[5]通过对陆地生态系统 的研究得出,当 N/P<10,N 元素是主要的限制性 因素; 当 N/P>20, P 元素则成为主要的限制性因 素;介于10~20可能受二者的共同限制。在本研 究的 5 种林分中,林下植被的 N/P 均为 10~20, 表明5种林分类型下的林下植被层N、P同时受到 二者的限制作用,且元素的需求相对稳定。对比不 同林下植被层各器官,灌木茎和根在常绿阔叶林和 滇油杉林中主要受 N 元素的限制;而草本层的地 上部分多受 P 元素的限制。

Ritter 等^[32]的研究表明,N和P一般在凋落物 的分解过程中首先富集,当C/N比值低于一个阀 值后,N才开始释放,而这个阈值通常为30。本 研究的数据表明,5种林分的凋落物平均C/N均 在30左右,表明不同林分间的N仍未或刚开始释 放,凋落物的分解速率偏慢。本研究显示,高 N/P值以及低P含量会使凋落物的分解受P的限制 作用比较强,凋落物的分解速率较低,随着分解的 进行,不同林分间凋落物C含量不断降低,而 N和P不断富集且富集程度不同,使C/P和C/N 不断降低,而N/P的比值随凋落物分解并未呈现一 致的变化趋势,维持在一个较高水平,表明总体的 分解速率较低。

4.3 不同影响因素对林下植被层和凋落物层 C、N、 P 化学计量比的影响

在植物的生长发育和凋落物的分解过程中, C、N、P含量及其化学计量特征的变化受到不同 因素的影响。本研究中,林下植被层的C和N含 量、C/N、C/P、N/P均表现为器官对其的影响最 大,在植物生长过程中,叶片作为植物的同化器官 和养分储存器官,需大量养分支持,故植物中的根 和茎将大量流动性的 N、P 传递到叶片, 使叶片中 的 N、P 贮量较大^[33], 而根系和茎干需要输出大量 养分以维持地上部分的生长, 故根系中的 N、P 含 量相对较少^[34]。凋落物层的C、N、P含量、 C/N、C/P 均表现为受不同凋落物分解层次的影响 较大,可能由于凋落物的 N、P 含量随凋落物的分 解而累积,在不同分解阶段累积量差异显著,而 C含量随着凋落物分解演替的进行而急剧消耗, 其C含量在不同层次间差异显著; N/P 水平常用作 植物生长发育中养分吸收的限制指标,不同林分之 间植被对养分的吸收利用机制随环境的不同而有差 异,表现为凋落物的 N/P 受林分类型的变化影响 较大。

5 结论

滇中亚高山优势森林群落林下植被层的 C 含量高于全球植物的平均 C 含量, N 和 P 含量均低 于全球和中国植物的水平。在不同器官之间,各林 分灌木层的 C、N、P 含量大部分表现为叶>根> 茎;草本层的 C、P 含量表现为地下部分>地上部 分,N 含量则相反;凋落物层的 C 含量大小表现 为未分解层>半分解>完全分解,N、P 含量则相反。

5种林分下的林下植被层和凋落物层的 C/N、 C/P 均高于全球尺度,林下植被层的 C/N、C/P 较高,表现出 5 种林分类型下植物对养分较高的利用 效率,同时也反映出 5 种林分下植被层生长比较缓 慢,其 N/P 均在 10~20 之间,说明 5 种林分林下 植被层受到 N、P 元素的同时限制且需求稳定;而 凋落物的平均 C/N 在 30 左右浮动,表明不同林分 间的分解速率偏慢,养分循环能力较低,因此,在 森林抚育措施中,可考虑采取适当措施保护林下植 被,提高土壤肥力,维持其长期稳定生产力。

在一定的生境条件下,5种林分的林下植被层的C、N、C/N、C/P、N/P均受器官的影响最大, 而凋落物的C、N、P、C/N、C/P 受不同分解层次 的影响最大。考虑到各器官的C、N、P含量及化 学计量比会随着树龄的增加发生改变,因此,在未 来对其化学计量特征的研究还需考虑时间尺度对其 的影响。

参考文献:

- [1]朱 喜,何志斌,杜 军,等.林下植被组成和功能研究进展[J].世 界林业研究,2014,27(5):24-30.
- [2] 佘淑凤, 胡玉福, 舒向阳, 等. 川西北高寒沙地不同年限高山柳林下 优势植物碳、氮、磷生态化学计量特征[J]. 草业学报, 2018, 27(4): 123-130.
- [3] 曾昭霞, 刘孝利, 王克林, 等. 桂西北喀斯特区原生林与次生林凋落 物及养分归还特征比较[J]. 生态环境学报, 2010, 19(1): 146-151.
- [4] Gholz H L, Prichett R F F L. Nutrient Dynamics in Slash Pine Plantation Ecosystems[J]. Ecology, 1985, 66(3): 647-659.
- [5] Güsewell S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.
- [6] Kerkhoff A, Fagan W, Elser J, et al. Phylogenetic and Growth Form Variation in the Scaling of Nitrogen and Phosphorus in the Seed Plants[J]. The American Naturalist, 2006, 168(4): 103-122.
- [7] Freschet G T, Cornelissen J H, Van Logtestijn R S, *et al.* Evidence of the 'plant economics spectrum' in a subarctic flora[J]. Journal of Ecology, 2010, 98(2): 362-373.
- [8] Zhang H, Yuan W, Dong W, et al. Seasonal patterns of litterfall in forest ecosystem worldwide[J]. Ecological Complexity, 2014, 20: 240-247.
- [9] 刘文丹,陶建平,张腾达,等.中亚热带木本植物各器官凋落物分解 特性[J].生态学报,2013,34(17):4850-4858.
- [10] 马文济, 赵延涛, 张晴晴, 等. 浙江天童常绿阔叶林不同演替阶段地

表凋落物的C:N:P化学计量特征[J]. 植物生态学报, 2014, 38(8): 833-842.

- [11] 张雨鉴, 宋娅丽, 王克勤. 滇中亚高山森林乔木层各器官生态化学 计量特征[J]. 生态学杂志, 2019, 38(6): 1669-1678.
- [12] 侯 芳, 王克勤, 宋娅丽, 等. 滇中亚高山典型森林林下植被碳氮储 量及其分配格局[J]. 水土保持研究, 2019, 26(1): 61-68.
- [13] 宫 超, 汪思龙, 曾掌权, 等. 中亚热带常绿阔叶林不同演替阶段碳 储量与格局特征[J]. 生态学杂志, 2011, 30(9): 1935-1941.
- [14] 史军辉, 马学喜, 刘茂秀, 等. 胡杨(Populus euphratica) 枝叶根化学 计量特征[J]. 中国沙漠, 2017, 37(1): 109-115.
- [15] 张德强,余清发. 鼎湖山秀风常绿阔叶林凋落物层化学性质的研究[J]. 生态学报, 1998, 18(1): 96-100.
- [16] 俞月凤,彭晚霞,宋同清,等.喀斯特峰丛洼地不同森林类型植物和 土壤C、N、P化学计量特征[J].应用生态学报,2014,25(4):947-954.
- [17] 董 雪,辛智鸣,黄雅茹,等.乌兰布和沙漠典型灌木群落土壤化学 计量特征[J].生态学报,2019,39(17):6247-6256.
- [18] 刘立斌,钟巧连,倪 健.贵州高原型喀斯特次生林C、N、P生态 化学计量特征与储量[J].生态学报,2019,39(22): 8606-8614.
- [19] He J S, Fang J Y, Wang Z H, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115-122.
- [20] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. EcologyLetters, 2000, 3(6): 540-550.
- [21] Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen andphosphorus stoichiometry across 753 terrestrial plantspecies in China[J]. New Phytologist, 2005, 168(2): 377-385.
- [22] 洪江涛, 吴建波, 王小丹. 全球气候变化对陆地植物碳氮磷生态化 学计量学特征的影响[J]. 应用生态学报, 2013, 24(9): 2658-2665.
- [23] 陈 娜, 王秀荣, 严小龙, 等. 酸性土壤上缺磷和铝毒对大豆生长的 交互作用[J]. 应用生态学报, 2010, 21(5): 1301-1307.
- [24] Busse M D, Cochran P H, Barrett J W. Changes in Ponderosa Pine Site Productivity following Removal of Understory Vegetation[J]. Soil Science Society of America Journal, 1996, 60(6): 1614-1621.
- [25] 姜沛沛,曹 扬,陈云明.陕西省森林群落乔灌草叶片和凋落物
 C、N、P生态化学计量特征[J].应用生态学报,2016,27(2):365-372.
- [26] Kobayashi T, Shimano K, Muraoka H. Effect of light availability on the carbon gain of beech (*Fagus crenata*) seedlings with reference to the density of dwarf bamboo (*Sasa kurilensis*) in an understory of Japan Sea type beech forest[J]. Plant Species Biology, 2004, 19(1): 33-46.
- [27] 赵 畅,龙 健,李 娟,等.茂兰喀斯特原生林不同坡向及分解层的凋落物现存量和养分特征[J].生态学杂志,2018,37(2):295-303.
- [28] 李雪峰, 韩士杰, 胡艳玲, 等. 长白山次生针阔混交林叶凋落物中有 机物分解与碳、氮和磷释放的关系[J]. 应用生态学报, 2008, 19(2): 245-251.
- [29] 原雅楠,李正才,王 斌,等. 榧树种内C、N、P生态化学计量特征

研究[J]. 林业科学研究, 2019, 32(6): 73-79.

- [30] 胡小燕,段爱国,张建国,等.广西大青山杉木人工林碳氮磷生态化 学计量特征[J].生态学报,2020,40(4):1207-1218.
- [31] 刘亚迪, 范少辉, 蔡春菊, 等. 地表覆盖栽培对雷竹林凋落物养分及 其化学计量特征的影响[J]. 生态学报, 2012, 32(22): 6955-6963.
- [32] Ritter E. Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (*Fagus sylvatica*) forest[J]. Soil Bio-

logy and Biochemistry, 2005, 37(7): 1237-1247.

- [33] 郑德祥,蔡杨新,杨玉洁,等. 闽北闽粤栲天然林主要树种幼树器官 碳氮磷化学计量特征分析[J]. 林业科学研究, 2017, 30(1): 154-159.
- [34] 徐云姬, 钱希旸, 李银银, 等. 根系分区交替灌溉对玉米籽粒灌浆及 相关生理特性的影响[J]. 作物学报, 2016, 42(2): 230-242.

Eco-stoichiometric Characteristics of Understory Vegetation and Litter Layer of Subalpine Forest in Central Yunnan, China

ZHANG Nai-mu¹, WANG Ke-qin¹, SONG Ya-li¹, ZHANG Yu-jian¹, DU Yun-xiang²

 College of Ecology and Environment, Southwest Forestry University, Kunming 650224, Yunnan, China; 2. Water Resource Bureau, Xinping Yi and Dai Autonomous County, Yuxi 653400, Yunnan, China)

Abstract: [Objective] To understand the C, N, P stoichiometric ratio pattern of the components in the understory vegetation layer and litter layer of the typical forest ecosystem in Mopan Mountain area, and to observe the influence of tree species and organs on the C, N, P stoichiometric characteristics of the understory vegetation layer and litter layer, so as to provide reference for nutrient redistribution in the forest ecosystem. [Method] Five typical forests were studied in subalpine forest in central Yunnan, the samples of understory vegetation and litters from different forests were collected in the field. The stoichiometric characteristics of C. N. and P in different organs of understory vegetation layer and components of litters layer were measured. [Result] The results showed that the C contents in the understory vegetation layers (shrub leaves, stems and roots, above-ground and underground parts of herbs) and litter layers (undecomposed layer, semi-decomposed layer, fully decomposed layer) of the five forest types were 410.17-561.08 and 81.47-625.8 mg g^{-1} , the N contents were 3.07-15.89 and 9.87-17.5 mg g^{-1} , and the P contents were 0.35-0.9 and 0.37-0.93 mg·g⁻¹. In different organs and decomposition levels, the C, N, and P contents of the shrub layer ranked as leaf > root > stem, and the C and P contents of the herb layer ranked as aboveground >underground part, while and the N content was the opposite; N and P content of the litter layers ranked as completely decomposed layer > semi-decomposed layer > undecomposed layer, and the C content was the opposite. [Conclusion] The growth of the understory vegetation layer of the five forest types in subalpine forest in central Yunnan is relatively slow, limited by both nitrogen and phosphorus. The decomposition rate of litters is slower, and the nutrient cycling capacity is low. Therefore, it is considered that appropriate protection of understory vegetation layer will improve the soil fertility and maintain long-term stable productivity of stand. Keywords: stoichiometric ratio; organ; understory vegetation layer; litter layer

(责任编辑:徐玉秀)