[1] Masson-Delmotte, V, Zhai P, Pirani A, et al.IPCC, 2021: Summary for Policymakers.In:Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R] . In Press.
[2] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystem[J]. Science, 1994, 263: 185-190. doi: 10.1126/science.263.5144.185
[3] Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988-993. doi: 10.1126/science.1201609
[4] 方欧娅, 汪 洋, 邵雪梅. 基于树轮资料重建森林净初级生产力的研究进展[J]. 地理科学进展, 2014, 33(8):1039-1046. doi: 10.11820/dlkxjz.2014.08.004
[5] 于 健, 罗春旺, 徐倩倩, 等. 长白山原始林红松径向生长及林分碳汇潜力[J]. 生态学报, 2016, 36(9):2626-2636.
[6] 王云霓, 邓秀秀, 王彦辉, 等. 宁夏六盘山香水河小流域华北落叶松人工林乔木层生物量的坡面变化和尺度效应[J]. 林业科学研究, 2015, 28(5):701-707. doi: 10.3969/j.issn.1001-1498.2015.05.015
[7] 刘立斌, 许海洋, 郭银明, 等. 基于树木年轮定量重建过去50年贵州典型森林优势树种的地上生物量与生产力变化[J]. 生态学报, 2020, 40(10):3441-3451.
[8] Zhu J J, Kang H Z, Tan H, et al. Effects of drought stresses induced by polyethylene glycol on germination of Pinus sylvestris var. mongolica seeds from natural and plantation forests on sandy land[J]. Journal of Forest Research, 2006, 11: 319-328. doi: 10.1007/s10310-006-0214-y
[9] 闫德仁, 闫 婷. 内蒙古森林碳储量估算及其变化特征[J]. 林业资源管理, 2010(3):31-33,103. doi: 10.3969/j.issn.1002-6622.2010.03.007
[10] 丛俊霞. 1985-2015年呼伦贝尔沙地樟子松天然林碳储量动态变化[D]. 沈阳: 沈阳农业大学, 2017.
[11] 曹恭祥, 郭 中, 王云霓, 等. 呼伦贝尔沙地樟子松人工林乔木层固碳速率及其对气象因子的响应[J]. 生态学杂志, 2020, 39(4):1082-1090.
[12] 闫德仁, 王玉华, 姚洪林, 等. 呼伦贝尔沙地[M]. 呼和浩特: 内蒙古大学出版社, 2010.
[13] 中国科学院内蒙宁夏综合考察队. 内蒙古自治区及东北西部地区地貌[M]. 北京: 科学出版社, 1980.
[14] 中国科学院内蒙古宁夏综合考察队. 内蒙古植被[M]. 北京: 科学出版社, 1985.
[15] Stokes M A, Smiley T L. An Introduction to Tree-Ring Dating[R]. Chicago, Arizona University, 1996.
[16] Holmes R L, Adams R K, Fritts H C. Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin with procedures used in the chronology development work including users manuals for computer programs COFECHA and ARSTAN[S]. 1986.
[17] 丛俊霞, 郑 晓, 朱教君, 等. 沙地樟子松天然林地上碳储量估算及其空间分布特征[J]. 生态学杂志, 2017, 36(11):2997-3007.
[18] 董利虎. 黑龙江省主要树种相容性生物量模型研究[D]. 哈尔滨: 东北林业大学, 2012.
[19] Osborn T J, Barichivich J, Harris I, et al. State of the Climate in 2017[R]. Bulletin of the American Meteorological Society, 2018, 99(8): 36-37.
[20] 李宗善, 刘国华, 傅伯杰, 等. 不同去趋势方法对树轮年表气候信号的影响——以卧龙地区为例[J]. 植物生态学报, 2011, 35(7):707-721.
[21] 张 晓, 潘磊磊, Semyung Kwon, 等. 沙地天然樟子松径向生长对干旱的响应[J]. 北京林业大学学报, 2018, 40(7):27-35.
[22] 胡海清, 罗碧珍, 魏书精, 等. 小兴安岭7种典型林型林分生物量碳密度与固碳能力[J]. 植物生态学报, 2015, 39(2):140-158. doi: 10.17521/cjpe.2015.0014
[23] 苑增武, 丁先山, 李成烈, 等. 樟子松人工林生物生产力与密度的关系[J]. 东北林业大学学报, 2000, 28(1):21-24. doi: 10.3969/j.issn.1000-5382.2000.01.006
[24] 李晓莎, 楚聪颖, 许中旗, 等. 河北省塞罕坝地区樟子松人工林的生物量[J]. 河北林果研究, 2016, 31(3):230-234.
[25] 袁立敏, 闫德仁, 王熠青, 等. 沙地樟子松人工林碳储量研究[J]. 内蒙古林业科技, 2011, 37(1):9-13. doi: 10.3969/j.issn.1007-4066.2011.01.003
[26] 贾忠奎, 公宁宁, 姚 凯, 等. 塞罕坝华北落叶松人工林生产力对坡向的响应[J]. 西北林学院学报, 2012, 27(4):1-6. doi: 10.3969/j.issn.1001-7461.2012.04.01
[27] 宋来萍, 刘礴霏, 王玉华, 等. 呼伦贝尔沙地不同树龄樟子松对气候的响应[J]. 南京林业大学学报:自然科学版, 2020, 44(2):159-164.
[28] 尚建勋, 时忠杰, 高吉喜, 等. 呼伦贝尔沙地樟子松年轮生长对气候变化的响应[J]. 生态学报, 2012, 32(4):1077-1084.
[29] 梁尔源, 邵雪梅, 刘鸿雁, 等. 树轮所记录的公元1842年以来内蒙古东部浑善达克沙地PDSI的变化[J]. 科学通报, 2007, 52(14):1694-1699. doi: 10.3321/j.issn:0023-074x.2007.14.016
[30] Martin-Benito D, Pederson N, Kose N, et al. Pervasive effects of drought on the tree growth across a wide climatic gradient in the temperate forests of the Caucssus[J]. Global Ecology and Biogeography, 2018, 27: 1314-1325. doi: 10.1111/geb.12799
[31] Calama R, Condea. M, de-Dios-Garciab J, et al. Linking climate, annual growth and competition in a Mediterranean forests: Pinus pinea in the Spanish Northern Plateau[J]. Agricultural and Forest Meteorology, 2019, 264: 309-321. doi: 10.1016/j.agrformet.2018.10.017
[32] Anderegg W R L, Kane J M, Anderegg L D L. Consequences of widespread tree mortality triggered by drought and temperature stress[J]. Nature Climate Change, 2013, 3: 30-36. doi: 10.1038/nclimate1635
[33] Schmitt A, Trouvé R, Seynave I, et al. Decreasing stand density favors resistance, resilience, and recovery of Quercus petraea trees to a severe drought, particularly on dry sites[J]. Annals of Forest Science, 2020, 77(1): 660-684.