[1] 廉永善, 陈学林, 于倬德, 等. 沙棘属植物起源的研究[J]. 沙棘, 1997, 10(2):1-7.
[2] Bartish I V, Jeppsson N, Nybom H, et al. Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology[J]. Systematic Botany, 2002, 27(1): 41-54.
[3] Sun K, Chen X, Ma R, et al. Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA[J]. Plant Systematics and Evolution, 2002, 235(1): 121-134. doi: 10.1007/s00606-002-0206-0
[4] 卢顺光, 卢 健, 温秀凤. 沙棘植物资源分布与营养学应用综述[J]. 中国水土保持, 2019(7):45-49. doi: 10.3969/j.issn.1000-0941.2019.07.016
[5] 陈学林, 马瑞君, 孙 坤, 等. 中国沙棘属种质资源及其生境类型的研究[J]. 西北植物学报, 2003, 23(3):451-455. doi: 10.3321/j.issn:1000-4025.2003.03.016
[6] Jia D, Abbott R J, Liu T, et al. Out of the Qinghai–Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae)[J]. New Phytologist, 2012, 194(4): 1123-1133. doi: 10.1111/j.1469-8137.2012.04115.x
[7] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1983.
[8] Wang H, Liu H, Yang M, et al. Phylogeographic study of Chinese seabuckthorn (Hippophae rhamnoides subsp. sinensis Rousi) reveals two distinct haplotype groups and multiple microrefugia on the Qinghai-Tibet Plateau[J]. Ecology and Evolution, 2014, 4(22): 4370-4379. doi: 10.1002/ece3.1295
[9] 郭亚龙. 拟南芥及其近缘种的适应性进化研究[J]. 中国科学: 生命科学, 2019, 49(4):320-326.
[10] 赵春芳, 陈国娟, 王芋华, 等. 利用RAPD标记分析卧龙自然保护区不同海拔沙棘种群的遗传变异[J]. 应用与环境生物学报, 2007, 13(6):753-758. doi: 10.3321/j.issn:1006-687x.2007.06.001
[11] 马玉花, 冶贵生, 向前胜, 等. 基于ITS序列探讨沙棘属植物的系统发育关系[J]. 应用生态学报, 2014, 25(10):2985-2990.
[12] 李珊珊, 曾艳飞, 何彩云, 等. 基于沙棘转录组序列开发EST-SSR分子标记[J]. 林业科学研究, 2017, 30(1):69-74.
[13] 王罗云, 何彩云, 罗红梅, 等. 沙棘7个亚种与26个重要品种的遗传多样性[J]. 浙江农林大学学报, 2019, 36(4):670-677. doi: 10.11833/j.issn.2095-0756.2019.04.006
[14] Dieringer D, Schlötterer C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets[J]. Molecular Ecology Notes, 2003, 3(1): 167-169. doi: 10.1046/j.1471-8286.2003.00351.x
[15] Blanquart F, Kaltz O, Nuismer S L, et al. A practical guide to measuring local adaptation[J]. Ecology Letters, 2013, 16(9): 1195-1205. doi: 10.1111/ele.12150
[16] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2): 945-959.
[17] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study[J]. Molecular Ecology, 2005, 14(8): 2611-2620. doi: 10.1111/j.1365-294X.2005.02553.x
[18] Rosenberg N A. DISTRUCT: a program for the graphical display of population structure[J]. Molecular Ecology Resource, 2004, 4(1): 137-138.
[19] Peakall R, Smouse P E. GenAlEx 6: Genetic analysis in excel[J]. Molecular Ecology, 2012, 6(1): 288-295.
[20] 孙 坤, 王瑞雪, 陈 纹, 等. 山西五台山不同海拔中国沙棘居群的遗传变异[J]. 西北师范大学学报:自然科学版, 2013, 49(2):77-81.
[21] Jia D R, Bartish I V. Climatic changes and orogeneses in the late Miocene of Eurasia: The main triggers of an expansion at a continental scale[J]? Frontiers in Plant Science, 2018, 9: 1400. doi: 10.3389/fpls.2018.01400.
[22] Manel S, Joost S, Epperson B K, et al. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field[J]. Molecular Ecology, 2010, 19(17): 3760-3772. doi: 10.1111/j.1365-294X.2010.04717.x
[23] Hoban S, Kelley J L, Lotterhos K E, et al. Finding the genomic basis of local adaptation: Pitfalls, Practical Solutions, and Future Directions[J]. The American Naturalist October, 2016, 188(4): 379-397. doi: 10.1086/688018
[24] 孙 坤, 陈 纹, 马瑞君, 等. 子午岭中国沙棘亚居群的遗传多样性研究[J]. 兰州大学学报: 自然科学版, 2004, 40(3):77-80.