[1] Chungopast S, Thongjoo C, Islam A K M M, et al. Efficiency of phosphate-solubilizing bacteria to address phosphorus fixation in Takhli soil series: a case of sugarcane cultivation, Thailand[J]. Plant and Soil, 2021, 460: 347-357. doi: 10.1007/s11104-020-04812-w
[2] Elser J, Bennett E. Phosphorus cycle: A broken biogeochemical cycle[J]. Nature, 2011, 478(7367): 29-31. doi: 10.1038/478029a
[3] Wang R Z, Liu H Y, Sandans J, et al. Interacting effects of urea and water addition on soil mineral‐bound phosphorus dynamics in semi‐arid grasslands with different land‐use history[J]. European Journal of Soil Science, 2020, 72(2): 946-962.
[4] 盛 荣, 肖和艾, 谭周进, 等. 土壤解磷微生物及其磷素有效性转化机理研究进展[J]. 土壤通报, 2010, 41(6):1505-1510.
[5] Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication by reducing both nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015. doi: 10.1126/science.1167755
[6] Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522-537. doi: 10.1016/j.scitotenv.2017.08.095
[7] Hidaka A, Kitayama K. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo[J]. Journal of Ecology, 2011, 99(3): 849-857. doi: 10.1111/j.1365-2745.2011.01805.x
[8] Hidaka A, Kitayama K. Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species[J]. Ecology and Evolution, 2013, 3(15): 4872-4880. doi: 10.1002/ece3.861
[9] AMES B N. Assay of inorganic phosphate, total phosphate and phosphatases[J]. Methods in Enzymology, 1966, 8: 115-118.
[10] 杨 豆, 石福习, 万松泽, 等. 金黄蓝状菌对毛竹土壤磷组分及苗木生物量的影响[J]. 林业科学研究, 2021, 34(3):145-151.
[11] Close D C, Beadle C L. Total, and chemical fractions, of nitrogen and phosphorus in Eucalyptus seedling leaves: Effects of species, nursery fertiliser management and transplanting[J]. Plant and Soil, 2004, 259(1): 85-95.
[12] Allen S E. Chemical analysis of ecological materials[J]. Journal of Applied Ecology, 1974, 13(2): 650.
[13] Yin J, Sui Z M, Huang J G. Mobilization of soil inorganic phosphorus and stimulation of crop phosphorus uptake and growth induced by Ceriporia lacerata HG2011[J]. Geoderma, 2021, 383: 114690. doi: 10.1016/j.geoderma.2020.114690
[14] Biswas J K, Banerjee A, Rai M, et al. Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion[J]. Geoderma, 2018, 330: 117-124. doi: 10.1016/j.geoderma.2018.05.034
[15] Wenzel C L, Ashford A E, Summerell B A. Phosphate-solubilizing bacteria associated with proteoid roots of seedlings of waratah (Telopea speciosissima (Sm. ) R. Br. )[J]. New Phytologist, 1994, 128(3): 487-496. doi: 10.1111/j.1469-8137.1994.tb02995.x
[16] Mendes G O, Freitas A L M, Pereira O L, et al. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources[J]. Annals of Microbiology, 2014, 64(1): 239-249. doi: 10.1007/s13213-013-0656-3
[17] Jorquera M A, Hernández M T, Rengel Z, et al. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil[J]. Biology and Fertility of Soils, 2008, 44(8): 1025. doi: 10.1007/s00374-008-0288-0
[18] Zeng Q W, Wu X Q, Wen X Y. Identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2 and its plant growth-promoting effects on poplar seedlings[J]. Annals of Microbiology, 2016, 67: 219-230.
[19] 李慧敏, 王 瑞, 施卫明, 等. 菜地土壤解磷微生物特征及其在磷形态转化调控中的作用[J]. 土壤, 2020, 52(4):668-675.
[20] 秦利均, 杨永柱, 杨星勇. 土壤溶磷微生物溶磷, 解磷机制研究进展[J]. 生命科学研究, 2019, 23(1):59-64 + 86.
[21] 韦宜慧, 陈嘉琪, 董玉红, 等. 杉木人工林土壤溶解细菌筛选及培养条件优化[J]. 林业科学研究, 2020, 33(4):83-91.
[22] Wei Z M, Zuo H D, Li J, et al. Insight into the mechanisms of insoluble phosphate transformation driven by the interactions of compound microbes during composting[J]. Environmental Science and Pollution Research, 2021: 32844-32855.
[23] Bhattacharyya P N, Jha D K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1327-1350. doi: 10.1007/s11274-011-0979-9
[24] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20):6584-6591.
[25] Efthymiou A, Grønlund M, Müller-Stöver D S, et al. Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains[J]. Soil Biology and Biochemistry, 2018, 116: 139-147. doi: 10.1016/j.soilbio.2017.10.006
[26] Zhang L, Fan J Q, Ding X D, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biology and Biochemistry, 2014, 74: 177-183. doi: 10.1016/j.soilbio.2014.03.004
[27] Yan L, Zhang X H, Han Z M, et al. Responses of foliar phosphorus fractions to soil age are diverse along a 2Myr dune chronosequence[J]. New Phytologist, 2019, 223(3): 1621-1633. doi: 10.1111/nph.15910
[28] Tu C, Wei J, Guan F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil[J]. Environment International, 2020, 137: 105576. doi: 10.1016/j.envint.2020.105576
[29] Zhang Y, Chen F S, Wu X Q, et al. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments[J]. Plos One, 2018, 13(7): e0199625. doi: 10.1371/journal.pone.0199625
[30] Hidaka A, Kitayama K. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients[J]. Journal of Ecology, 2009, 97(5): 984-991. doi: 10.1111/j.1365-2745.2009.01540.x
[31] Wang F C, Fang X M, Wang G G, et al. Effects of nutrient addition on foliar phosphorus fractions and their resorption in different-aged leaves of Chinese fir in subtropical China[J]. Plant and Soil, 2019, 443: 41-54. doi: 10.1007/s11104-019-04221-8
[32] Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants: From soil to cell[J]. Plant Physiology, 1998, 116(2): 447-453. doi: 10.1104/pp.116.2.447
[33] Mo Q F, Li Z A, Sayer E J, et al. Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability[J]. Functional Ecology, 2019, 33(3): 503-513.