[1] 韩长志, 祝友朋, 王韵晴. 核桃细菌性黑斑病的研究进展[J]. 林业科学研究,2021,34(04):184-190.
[2] LUO Y, F J A NIEDERHOLZER, D G FELTS, et al. Inoculum quantification of canker-causing pathogens in prune and walnut orchards using real-time PCR[J]. Journal of Applied Microbiology,2020,129(5): 1337-1348. doi: 10.1111/jam.14702
[3] 巨云为, 赵盼盼, 黄麟等. 薄壳山核桃主要病害发生规律及防控[J]. 南京林业大学学报(自然科学版),2015,39(04):31-36.
[4] WANG Q-H, K FAN, D-W LI, et al. Walnut anthracnose caused by Colletotrichum siamense in China[J]. Australasian Plant Pathology,2017,46: 585-595. doi: 10.1007/s13313-017-0525-9
[5] WANG Q-H, K FAN, D-W LI, et al. Identification, virulence and fungicide sensitivity of Colletotrichum gloeosporioides ss responsible for walnut anthracnose disease in China[J]. Plant disease,2020,104(5): 1358-1368. doi: 10.1094/PDIS-12-19-2569-RE
[6] WANG Q, D LI, C DUAN, et al. First report of walnut anthracnose caused by Colletotrichum fructicola in China[J]. Plant Disease,2018,102(1): 247-247.
[7] SAVIAN L, M MUNIZ, T POLETTO, et al. First report of Colletotrichum nymphaeae causing anthracnose on Juglans regia fruits in southern Brazil[J]. Plant Disease,2019,103(12): 3287.
[8] 孟 珂, 张亚波, 常 君, 等. 8种杀菌剂对9种薄壳山核桃炭疽病病原菌的毒力测定[J]. 林业科学研究,2021,34(01):153-164.
[9] BIAN J-Y, YU-LANSONG, QINGSUN, MEI-LINGYANG, JI-YUNJU, YUN-WEILI, DE-WEIHUANG, LIN. The fungal endophyte epicoccum dendrobii as a potential biocontrol agent against Colletotrichum gloeosporioides[J]. Phytopathology,2021,111(2): 293-303. doi: 10.1094/PHYTO-05-20-0170-R
[10] CHOUB V, H AJUNA, S WON, et al. Antifungal activity of Bacillus velezensis CE 100 against anthracnose disease (Colletotrichum gloeosporioides) and growth promotion of walnut (Juglans regia L. ) trees[J]. International journal of molecular sciences,2021,22(19): 10438. doi: 10.3390/ijms221910438
[11] ANAGNOSTIS A, ASIMINARI, E PAPAGEORGIOU, et al. A convolutional neural networks based method for anthracnose infected walnut tree leaves identification[J]. Applied Sciences,2020,10(2): 469. doi: 10.3390/app10020469
[12] ELITH J, C H. GRAHAM, R P. ANDERSON, et al. Novel methods improve prediction of species' distributions from occurrence data[J]. Ecography,2010,29(2): 129-151.
[13] STOCKWELL D, D P PETERS. The GARP modelling system: Problems and solutions to automated spatial prediction[J]. International Journal of Geographical Information Science,1999,13(2): 143-158. doi: 10.1080/136588199241391
[14] THUILLER W, B LAFOURCADE, R ENGLER, et al. BIOMOD – a platform for ensemble forecasting of species distributions[J]. Ecography,2010,32(3): 369-373.
[15] BELBIN L. Comparing two sets of community data: A method for testing reserve adequacy[J]. Australian Journal of Ecology,1992,17(3): 255-262. doi: 10.1111/j.1442-9993.1992.tb00807.x
[16] BEAUMONT L J, L HUGHES, M POULSEN. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions[J]. Ecological Modelling,2005,186(2): 251-270. doi: 10.1016/j.ecolmodel.2005.01.030
[17] PINEDA E, J M LOBO. Assessing the accuracy of species distribution models to predict amphibian species richness patterns[J]. Journal of Animal Ecology,2009,78(1): 182-190. doi: 10.1111/j.1365-2656.2008.01471.x
[18] DEL RIO S, R CANAS, E CANO, et al. Modelling the impacts of climate change on habitat suitability and vulnerability in deciduous forests in Spain[J]. Ecological Indicators,2021,131: 108202. doi: 10.1016/j.ecolind.2021.108202
[19] 刘佳琪, 魏广阔, 史常青, 等. 基于MaxEnt模型的北方抗旱造林树种适宜区分布[J]. 北京林业大学学报,2022,44(07):63-77. doi: 10.12171/j.1000-1522.20210527
[20] RAGHAVAN R K H, A. C. G. LAWRENCE, K. E. GANTA, R. R. PETERSON, A. T. POMROY, W. E. Predicting the potential distribution of Amblyomma americanum (Acari: Ixodidae) infestation in New Zealand, using maximum entropy-based ecological niche modelling[J]. Experimental & applied acarology,2020,80(2): 227-245.
[21] 周玉婷, 葛雪贞, 邹 娅, 等. 基于Maxent模型的长林小蠹的全球及中国适生区预测[J]. 北京林业大学学报,2022,44(11):90-99. doi: 10.12171/j.1000-1522.20210345
[22] 林司曦, 叶建仁. 栎树猝死病在中国的入侵风险评估[J]. 南京林业大学学报(自然科学版),2020,44(06):161-168.
[23] ZHANG J, J ZHU, W GUO. A machine learning-based approach to predict the fatigue life of three-dimensional cracked specimens[J]. International Journal of Fatigue,2022,159: 106808. doi: 10.1016/j.ijfatigue.2022.106808
[24] 梁 莉, 冼晓青, 赵浩翔, 等. 基于MaxEnt模型的白缘象甲潜在地理分布区识别[J]. 昆虫学报,2022,65(10):1334-1342.
[25] STEVEN, J. , PHILLIPS, et al. Opening the black box: an open-source release of Maxent[J]. Ecography,2017,40: 887-893. doi: 10.1111/ecog.03049
[26] MORENO R, R ZAMORA, J R MOLINA, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent)[J]. Ecological Informatics,2011,6(6): 364-370. doi: 10.1016/j.ecoinf.2011.07.003
[27] SWETS, J. Measuring the accuracy of diagnostic systems[J]. Science,1988,240(4857): 1285-1293. doi: 10.1126/science.3287615
[28] 喜 超, 木 霖, 李 胜, 等. 基于MaxEnt和ArcGIS预测大薸在云南的潜在适生区[J]. 云南农业大学学报(自然科学),2018,33(01):7-16.
[29] 王艳君, 高 泰, 石 娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析[J]. 北京林业大学学报,2021,43(09):59-69. doi: 10.12171/j.1000-1522.20200416
[30] 张 童, 黄治昊, 彭杨靖, 等. 基于Maxent模型的软枣猕猴桃在中国潜在适生区预测[J]. 生态学报,2020,40(14):4921-4928.
[31] 韩晓潮, 明艳芳, 姬忠林, 等. 基于最大熵模型分析小麦黄花叶病在黄淮海地区的适生性[J]. 中国农业科技导报,2020,22(04):111-119.
[32] 郭彦龙, 赵泽芳, 乔慧捷, 等. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展,2020,35(12):1292-1305. doi: 10.11867/j.issn.1001-8166.2020.110
[33] 路晓月, 王子夜, 张晓飞, 等. 河北邢台核桃炭疽病发生动态及其与环境因子的相关性分析[J]. 中国植保导刊,2022,42(10):42-46. doi: 10.3969/j.issn.1672-6820.2022.10.008
[34] BAXTERS A, VAN DER WESTHUIZEN, GCA, A EICKER. A review of literature on the taxonomy, morphology and biology of the fungal gems Colletotrichum[J]. Phytophylactica,1985,17(1): 15-18.
[35] PHOULIVONG S, L CAI, H CHEN, et al. Colletotrichum gloeosporioides is not a common pathogen on tropical fruits[J]. Fungal Diversity,2010,44: 33-43. doi: 10.1007/s13225-010-0046-0