[1] 蒋高明.当前植物生理生态学研究的几个热点问题[J].植物生态学报, 2001, 25(5):514-519. doi: 10.3321/j.issn:1005-264X.2001.05.002
[2] 周驿之, 程艳霞, 樊莹, 等.长白山不同海拔白桦幼苗移栽至同一生境的光合及反射光谱特性[J].生态学报, 2018, 38(14):5109-5119.
[3] Chapin F S, Chapin M C. Ecotypic differentiation of growth processes in Carex aquatilis along latitudinal and local gradients[J]. Ecology, 1981, 62(4):1000-1009. doi: 10.2307/1936999
[4] Maron J L, Vila M, Bommarco R, et al. Rapid evolution of an invasive plant[J]. Ecological Monographs, 2004, 74(2):261-280. doi: 10.1890/03-4027
[5] 王小菲, 高文强, 刘建锋, 等.不同生境对栓皮栎幼苗光合生理特性的影响[J].生态学报, 2016, 36(24):8062-8070.
[6] 王建华, 任士福, 史宝胜, 等.遮荫对连翘光合特性和叶绿素荧光参数的影响[J].生态学报, 2011, 31(7):1811-1817.
[7] Ågren J, Schemske D W. Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range[J]. New Phytologist, 2012, 194(4):1112-1122. doi: 10.1111/j.1469-8137.2012.04112.x
[8] Mclean E H, Prober S M, Stock W D, et al. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa[J]. Plant Cell & Environment, 2014, 37(6):1440-1451.
[9] Fang J, Wang Z, Tang Z. Atlas of woody plants in china:distribution and climate[M]. Berlin:Springer Berlin Heidelberg, 2011:190.
[10] 高文强.不同地理梯度上栓皮栎种群动态及其环境解释[D].北京: 中国林业科学研究院, 2017.
[11] 孙巧玉, 刘勇.控释肥和灌溉方式对栓皮栎容器苗苗木质量及造林效果的影响[J].林业科学研究, 2018, 31(5):140-147.
[12] 王新民, 陆元昌, 宁金魁, 等.北京地区不同起源栓皮栎早期生长过程研究[J].林业科学研究, 2009, 22(6):860-864. doi: 10.3321/j.issn:1001-1498.2009.06.020
[13] 刘建锋, 肖文发, 熊定鹏, 等.不同纬度栓皮栎幼苗生理生态特征的比较[J].植物研究, 2011, 31(4):467-471.
[14] 倪妍妍, 胡军, 刘建锋, 等.不同地理种源栓皮栎幼苗生长与物质分配的变化趋势[J].西北植物学报, 2017, 37(3):534-540.
[15] Thornley J H M. Mathematical models in plant physiology[M]. London:Academic Press, 1976.
[16] 刘建锋, 杨文娟, 史胜青, 等.崖柏与侧柏光合特性和叶绿素荧光参数的比较研究[J].西北植物学报, 2011, 31(10):2071-2077.
[17] Duursma R A. Plantecophys-an R package for analysing and modelling leaf gas exchange data[J]. PLoS ONE, 2015, 10(11):e0143346. doi: 10.1371/journal.pone.0143346
[18] Gu L, Pallardy S G, Tu K, et al. Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves[J]. Plant Cell & Environment, 2010, 33(11):1852-1874.
[19] 张昆, 万勇善, 刘风珍, 等.花生幼苗光合特性对弱光的响应[J].应用生态学报, 2009, 20(12):2989-2995.
[20] Sharp R E, Matthews M A, Boyer J S. Kok effect and the quantum yield of photosynthesis light partially inhibits dark respiration[J]. Plant Physiology, 1984, 75(1):95-101. doi: 10.1104/pp.75.1.95
[21] 李理渊, 李俊, 同小娟, 等.不同光环境下栓皮栎和刺槐叶片光合光响应模拟[J].应用生态学报, 2018, 29(7):2295-2306.
[22] Heraud P, Beardall J. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes[J]. Photosynthesis Research, 2000, 63(2):123-134. doi: 10.1023/A:1006319802047
[23] 何炎红, 郭连生, 田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究[J].西北植物学报, 2005, 25(11):2226-2233. doi: 10.3321/j.issn:1000-4025.2005.11.016
[24] Wullschleger S D. Biochemical limitations to carbon assimilation in C3 plants-a retrospective analysis of the A/Ci curves from 109 species[J]. Journal of Experimental Botany, 1993, 44(262):907-920.
[25] Long S P, Bernacchi C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. Journal of Experimental Botany, 2003, 54(392):2393-2401. doi: 10.1093/jxb/erg262
[26] 梁星云, 刘世荣. FvCB生物化学光合模型及A-Ci曲线测定[J].植物生态学报, 2017, 41(6):693-706.
[27] 夏国威, 陈东升, 孙晓梅, 等.日本落叶松冠层光合生理参数的空间异质性研究[J].林业科学研究, 2018, 31(6):133-140.
[28] 唐星林, 周本智, 周燕, 等.基于FvCB模型的几种草本和木本植物光合生理生化特性[J].应用生态学报, 2017, 28(5):1482-1488.
[29] Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000, 51(345):659-668. doi: 10.1093/jexbot/51.345.659