[1] 周政贤. 中国马尾松[M]. 北京: 中国林业出版社, 2001: 3-10.
[2] 马 琼, 黄建国, 蒋剑波. 接种外生菌根真菌对马尾松幼苗生长的影响[J]. 福建林业科技, 2005, 32(2):85-88.
[3] 仝雅娜, 丁贵杰. 1, 2代马尾松林土壤不同形态铝含量[J]. 林业科学, 2012, 48(6):8-11. doi: 10.11707/j.1001-7488.20120602
[4] 周志峰, 王明霞, 袁 玲, 等. 不同生境外生菌根真菌对铝胁迫的响应[J]. 生态学报, 2016, 36(10):2842-2850.
[5] 杜晓明, 田仁生. 重庆南山马尾松衰亡与铝中毒[J]. 环境科学学报, 1996, 16(6):21-25.
[6] WANG J, HUANG Y, JIANG X Y. Influence of ectomycorrhizal fungi on absorption and balance of essential elements of Pinus tabulaeformis seedlings in saline soil[J]. Pedosphere, 2011, 21(3): 400-406. doi: 10.1016/S1002-0160(11)60141-0
[7] 王 艺, 张 弛, 丁贵杰, 等. 干旱胁迫对马尾松菌根化苗木水分生理和光合特性的影响[J]. 浙江林业科技, 2019, 39(4):1-8.
[8] ZHANG T, WEN X P, DING G J. Ectomycorrhizal symbiosis enhances tolerance to low phosphorous through expression of phosphate transporter genes in masson pine (Pinus massoniana)[J]. Acta Physiol Plant, 2017, 39(7): 101. doi: 10.1007/s11738-017-2392-y
[9] 辜夕容, 倪亚兰, 江亚男, 等. 接种双色蜡蘑对马尾松根际土壤无机磷和活性铝含量的影响[J]. 土壤学报, 2018, 55(5):1179-1189. doi: 10.11766/trxb201802120407
[10] YU P Y, SUN Y P, HUANG Z L, et al. The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area[J]. Journal of Hazardous Materials, 2020, 381: 121203. doi: 10.1016/j.jhazmat.2019.121203
[11] 张 薇, 黄建国, 袁 玲, 等. 外生菌根真菌对Al3+胁迫和低钾土壤的响应[J]. 环境科学, 2014, 35(10):3862-3868.
[12] RINCÓN A, ALVAREZ I F, PERA J. Inoculation of containerized Pinus pinea L. seedlings with seven ectomycorrhizal fungi[J]. Mycorrhiza, 2001, 11(6): 265-271. doi: 10.1007/s005720100127
[13] LU N, YU M, CUI M, et al. Effects of different ectomycorrhizal fungal inoculates on the growth of Pinus tabulaeformis seedlings under greenhouse conditions[J]. Forests, 2016, 7(12): 316. doi: 10.3390/f7120316
[14] 安 丽. 我国森林生态系统的外生菌根研究进展[J]. 陕西林业科技, 2014, 42(2):14-21. doi: 10.3969/j.issn.1001-2117.2014.02.004
[15] 王明霞, 袁 玲, 周志峰, 等. 铝对外生菌根真菌草酸分泌及氮磷钾吸收的影响[J]. 林业科学, 2012, 48(2):82-88.
[16] 高 悦, 吴小芹, 孙民琴. 马尾松不同菌根苗对氮磷钾的吸收利用[J]. 南京林业大学学报(自然科学版), 2009, 33(4):77-80.
[17] 陈 展, 尚 鹤. 接种外生菌根菌对模拟酸雨胁迫下马尾松营养元素的影响[J]. 林业科学, 2014, 50(1):156-163.
[18] 汪远秀, 李快芬, 丁贵杰, 等. 铝对马尾松菌根苗生长及营养元素吸收的影响[J]. 森林与环境学报, 2020, 40(2):119-125.
[19] 周 圆. 一氧化氮和根系分泌物在植物铝毒害和耐铝机制中的作用[D]. 杭州: 浙江大学, 2012.
[20] 姜 娜, 任 健, 罗富成, 等. 铝胁迫对不同耐铝基因型紫花苜蓿根尖及细胞壁氧化酶活性的影响[J]. 中国草地学报, 2020, 42(6):15-22.
[21] 于姣妲, 夏丽丹, 殷丹阳, 等. 磷素对杉木幼苗耐铝性的影响机制[J]. 林业科学, 2018, 54(5):36-47.
[22] 谈建康, 孔繁翔. 酸沉降对马尾松菌根内Al积累和细胞损伤的影响[J]. 中国环境科学, 2004, 24(4):424-428.
[23] SINGH S, TRIPATHI D K, SINGH S, et al. Toxicity of aluminium on various levels of plant cells and organism: A review[J]. Environmental and Experimental Botany, 2017, 137: 177-193. doi: 10.1016/j.envexpbot.2017.01.005
[24] 余 燕. 多胺对小麦耐铝性的调控作用及其机理[D]. 杭州: 浙江大学, 2016.
[25] GUNSÉ B, POSCHENRIEDER C, BARCELÓ J. Water transport properties of roots and root cortical cells in proton- and Al-stressed maize varieties[J]. Plant Physiol, 1997, 113(2): 595-602. doi: 10.1104/pp.113.2.595
[26] KOCHIAN L V, HOEKENGA O A, PIÑEROS M A. How do crop plants tolerate acid soils? Mecllanisms of aluminum tolerance and phosphorus efficiency[J]. Annual Review of Plant Biology, 2004, 55: 459-493. doi: 10.1146/annurev.arplant.55.031903.141655
[27] DARKO E, AMBRUS H, STEFANOVITS-BÁNYAI E, et al. Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection[J]. Plant Science, 2004, 166(3): 583-591. doi: 10.1016/j.plantsci.2003.10.023
[28] SHARMA P, DUBEY R S. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum[J]. Plant Cell Reports, 2007, 26(11): 2027-2038. doi: 10.1007/s00299-007-0416-6
[29] YAMAMOTO Y, KOBAYASHI Y, MATSUMOTO H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots[J]. Plant Physiology, 2001, 125(1): 199-208. doi: 10.1104/pp.125.1.199
[30] LIU H Y, CHEN H Y, DING G J, et al. Identification of candidate genes conferring tolerance to Aluminum stress in Pinus massoniana inoculated with ectomycorrhizal fungus[J]. BMC Plant Biology, 2020, 20: 521. doi: 10.1186/s12870-020-02719-3
[31] WANG M, YUAN L, HUANG J, et al. Al3+ absorption and assimilation by four ectomycorrhizal fungi[J]. Environment Science, 2015, 36(9): 3479-3485.
[32] TAYLOR G J, STEPHENS J L, HUNTE D B, et al. Direct measurement of aluminium uptake and distribution in single cells of Chara coralline[J]. Plant Physiology, 2000, 123(3): 987-996. doi: 10.1104/pp.123.3.987
[33] KOPITTKE P M, MOORE K L, LOMBI E, et al. Identification of the primary lesion of toxic aluminum in plant roots[J]. Plant Physiology, 2015, 167(4): 1402-1411. doi: 10.1104/pp.114.253229
[34] BLAMEY F P C, ASHER C J, EDWARDS D G, et al. In vitro evidence of aluminium effects on solution movement through root cell walls[J]. Journal of Plant Nutrition, 1993, 16(4): 555-562. doi: 10.1080/01904169309364556
[35] CHANG Y C, YAMAMOTO Y, MATSUMOTO H. Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L. ) cells treated with a combination of aluminium and iron[J]. Plant Cell Environment, 1999, 22(8): 1009-1017. doi: 10.1046/j.1365-3040.1999.00467.x
[36] GUPTA N, GAURAV S S, KUMAR A. Molecular basis of aluminium toxicity in plants: a Review[J]. American Journal of Plant Sciences, 2013, 4(12): 21-37.
[37] VARDAR F, UNAL M. Aluminum toxicity and resistance in higher plants[J]. Advances in Molecular Biology, 2007, 1: 1-12.
[38] ZHANG H H, JIANG Z, QIN R, et al. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana[J]. BMC Plant Biology, 2014, 14(1): 264. doi: 10.1186/s12870-014-0264-9
[39] čIAMPOROVÁ M. Diverse responses of root cell structure to aluminum stress[J]. Plant Soil, 2000, 226(1): 113-116. doi: 10.1023/A:1026468403157
[40] 钱莲文, 吴文杰, 孙境蔚, 等. 铝胁迫对常绿杨生长及叶肉细胞超微结构的影响[J]. 林业科学, 2016, 52(11):39-46. doi: 10.11707/j.1001-7488.20161105