[1] Beven K, Germann P. Macropores and water flow in soils[J]. Water Resource Research, 1982, 18(5): 1311-1325. doi: 10.1029/WR018i005p01311
[2] 牛健植, 余新晓, 张志强. 优先流研究现状及发展趋势[J]. 生态学报, 2006, 26(1):231-243. doi: 10.3321/j.issn:1000-0933.2006.01.030
[3] Nimmo J R. Preferential flow occurs in unsaturated conditions[J]. Hydrological Processes, 2012, 26: 786-789. doi: 10.1002/hyp.8380
[4] Buczko U, Bens O, Huttl R. Tillage effects on hydraulic properties on macro-porosity in silty and sandy soils[J]. Soil Science Society of America Journal, 2006, 70: 1998-2007. doi: 10.2136/sssaj2006.0046
[5] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20):1896-1899. doi: 10.3321/j.issn:0023-074X.1993.20.010
[6] Perfect E, Kay B D. Applications of fractals in soil and tillage research: A review[J]. Soil and Tillage Research, 1995, 36(1-2): 1-20. doi: 10.1016/0167-1987(96)81397-3
[7] 吕 刚, 金兆梁, 凌 帅, 等. 浑河源头水源涵养林土壤优先流特征[J]. 水土保持学报, 2019, 33(4):287-292.
[8] Soto-Gómez D, Pérez-Rodríguez P, Vázquez-Juiz L, et al. Linking pore network characteristics extracted from CT images to the transport of solute and colloid tracers in soils under different tillage managements[J]. Soil and Tillage Research, 2018, 177: 145-154. doi: 10.1016/j.still.2017.12.007
[9] 李荣磊, 陈留美, 邵明安, 等. 黄土高原不同土质和植被类型下Cl-运移特征及影响因素[J]. 土壤学报, 2021, 58(5):1190-1201.
[10] Feng Y, Wang J, Bai Z, et al. Three-dimensional quantification of macropore networks of different compacted soils from opencast coal mine area using X-ray computed tomography[J]. Soil and Tillage Research, 2020, 198: 104567. doi: 10.1016/j.still.2019.104567
[11] Chen M, Niu J, Xiang L, et al. Quantifying soil macropore networks in different forest communities using industrial computed tomography in a mountainous area of North China[J]. Journal of Soils and Sediments, 2017, 17(9): 1-14.
[12] 王金悦, 邓羽松, 李典云, 等. 连栽桉树人工林土壤大孔隙特征及其对饱和导水率的影响[J]. 生态学报, 2021, 41(19):7689-7699.
[13] Zhang Y, Niu J, Zhu W, et al. Effects of plant roots on soil preferential pathways and soil matrix in forest ecosystems[J]. Journal of Forestry Research, 2015, 26(2): 397-404. doi: 10.1007/s11676-015-0023-2
[14] 周 虎, 李保国, 吕贻忠, 等. 不同耕作措施下土壤孔隙的多重分形特征[J]. 土壤学报, 2010, 47(6):1094-1100.
[15] 唐海龙, 龚 伟, 王景燕, 等. 青花椒种植对土壤微团聚体分形维数和生化特性的影响[J]. 西北农林科技大学学报:自然科学版, 2019, 47(1):90-97.
[16] 王玉杰, 王云琦, 夏一平, 等. 重庆缙云山典型林分土壤结构分形特征[J]. 中国水土保持科学, 2006, 4(4):39-46.
[17] Fei Q, Zhang R, Xia L, et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region[J]. Soil and Tillage Research, 2018, 184(6): 45-51.
[18] 李学斌, 张义凡, 陈 林, 等. 荒漠草原典型群落土壤粒径和养分的分布特征及其关系研究[J]. 西北植物学报, 2017, 37(8):1635-1644.
[19] Negrete-Yankelevich S, Fragoso C, Newton A C, et al. Successional changes in soil, litter and macroinvertebrate parameters following selective logging in a Mexican Cloud Forest[J]. Applied Soil Ecology., 2007, 35(2): 340-355. doi: 10.1016/j.apsoil.2006.07.006
[20] 李 朝, 周 伟, 关庆伟, 等. 徐州石灰岩山地侧柏人工林生物量及其影响因子分析[J]. 安徽农业大学学报., 2010(4):669-674.
[21] Qiang W, He L, Zhang Y, et al. Aboveground vegetation and soil physicochemical properties jointly drive the shift of soil microbial community during subalpine secondary succession in southwest China[J]. Catena, 2021, 202: 105-251.
[22] Chai Y, Cao Y, Yue M, et al. Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau[J]. Frontiers in Microbiology, 2019, 10: 1-15. doi: 10.3389/fmicb.2019.00001
[23] Liu Y L, Zhu G Y, Hai X Y, et al. Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: Evidence from the Loess Plateau[J]. Ecological Engineering, 2020, 142: 105631. doi: 10.1016/j.ecoleng.2019.105631
[24] 李 平, 王冬梅, 丁 聪, 等. 黄土高寒区典型植被类型土壤入渗特征及其影响因素[J]. 生态学报, 2020, 40(5):1610-1620.
[25] 彭舜磊, 由文辉, 沈会涛. 植被群落演替对土壤饱和导水率的影响[J]. 农业工程学报, 2010, 26(11):78-84.
[26] 鲍士旦. 土壤农化分析. 3版[M]. 北京: 中国农业出版社, 2000.
[27] 陈晓冰. 重庆四面山4种土地利用类型土壤优先流特征研究[D]. 北京: 北京林业大学, 2016.
[28] 欧阳学军, 黄忠良, 周国逸, 等. 鼎湖山南亚热带森林群落演替对土壤化学性质影响的累积效应研究[J]. 水土保持学报, 2003, 17(4):51-54.
[29] 陈晓冰, 程金花, 陈引珍, 等. 基于林分空间结构分析方法的土壤大孔隙空间结构研究[J]. 农业机械学报, 2015, 46(11):174-186 + 194. doi: 10.6041/j.issn.1000-1298.2015.11.024
[30] 邵一敏, 赵洋毅, 段 旭, 等. 基于分形分析的干热河谷区典型地类土壤优先路径分布特征[J]. 西北农林科技大学学报:自然科学版, 2020, 48(7):102-112.
[31] 骆紫藤. 华北土石山区典型林地根土层优先流特征及其影响因素研究[D]. 北京: 北京林业大学, 2020.
[32] Mawodza T, Burca G, Casson S, et al. Wheat root system architecture and soil moisture distribution in an aggregated soil using neutron computed tomography[J]. Geoderma, 2020, 359: 1-30.
[33] 甘 磊, 张静举, 黄太庆, 等. 基于CT技术的甘蔗地不同耕作措施下土壤孔隙结构研究[J]. 西南农业学报, 2017, 30(8):1843-1848.
[34] 甘 磊, 李 健, 李 帅, 等. 广西甘蔗地不同耕作方式下土壤孔隙特征[J]. 水土保持研究, 2020, 27(6):122-130.
[35] 王 伟, 张洪江, 李 猛, 等. 重庆市四面山林地土壤水分入渗特性研究与评价[J]. 水土保持学报, 2008, 22(4):95-99.
[36] 刘目兴, 吴 丹, 吴四平, 等. 三峡库区森林土壤大孔隙特征及对饱和导水率的影响[J]. 生态学报, 2016, 36(11):3189-3196.
[37] 熊佰炼, 高 扬, 彭 韬, 等. 喀斯特坡地浅层岩溶裂隙土壤团聚体稳定性与养分垂向变化特征[J]. 土壤学报, 2021, 58(6):1472-1485.
[38] Hu X, Li X Y, Wang P, et al. Influence of exclosure on CT-measured soil macropores and root architecture in a shrub-encroached grassland in northern China[J]. Soil and Tillage Research, 2019, 187: 21-30. doi: 10.1016/j.still.2018.10.020
[39] Guo X, Meng M, Zhang J, et al. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests[J]. Scientific Reports, 2016, 6(1): 1-9. doi: 10.1038/s41598-016-0001-8
[40] Liu X, Zhang G, Heathman G C, et al. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China[J]. Geoderma, 2009, 154: 123-130. doi: 10.1016/j.geoderma.2009.10.005
[41] Min X, Jiao H, Li X. Characterizing effects of mechanical compaction on macropores of reclaimed soil using computed tomography(CT) scanning[J]. Canadian Journal of Soil Science, 2020, 100(2): 150-161.