[1] Kyereh B, Swaine M D, Thompson J. Effect of light on the germination of forest trees in Ghana[J]. Journal of Ecology, 1999, 87: 772-783
[2] Niinemets ü. The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited[J]. Journal of Ecology, 2006, 94: 464-470
[3] 张教林, 曹坤芳. 不同生态习性热带雨林树种的幼苗对光能的利用和耗散[J]. 应用生态学报, 2004, 15 (3): 372-376
[4] Lusk C H, Pozo A D. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates[J]. Austral Ecology, 2002, 27: 173-182
[5] Huc R, Ferhi A, Guehl J M. Pioneer and late stage tropical rainforest tree species (French Guyana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential[J]. Oecologia, 1994, 99: 297-305
[6] Ishida A, Nakano T, Matsumoto Y, et al. Diurnal changes in leaf gas exchange and chlorophyll fluorescence in tropical tree species with contrasting light requirements[J]. Ecological Research, 1999, 14: 77-88
[7] 王博轶, 冯玉龙. 生长环境光强对两种热带雨林树种幼苗光合作用的影响[J]. 生态学报, 2005, 25(1): 23-30
[8] 郭晓荣, 曹坤芳, 许再富. 热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光环境的反应[J]. 应用生态学报, 2004, 15(3): 377-381
[9] Urban O, Janouš D, Acosta M, et al. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation[J]. Global Change Biology, 2007, 13: 157–168
[10] Rocha A V, Su H B, Vogel C S, et al. Photosynthetic and water use efficiency responses to diffuse radiation by an aspen-dominated northern hardwood forest[J]. Forest Science, 2004, 50: 793-801
[11] Reinhardt K, Smith W K. Impacts of cloud immersion on microclimate, photosynthesis and water relations of Abies fraseri (Pursh.) Poiret in a temperate mountain cloud forest[J]. Oecologia, 2008, 158: 229–238
[12] Lambers H, Chapin F S, Pons L. Plant physiological ecology[M]. New York: Springer-Verlag, 1998
[13] Graham E A, Mulkey S S, Kitajima K, et al. Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons[J]. PNAS, 2003, 100: 572-576
[14] Young D R, Smith W K. Effect of cloudcover on photosynthesis and transpiration in the subalpine understory species Arnica latifolia [J]. Ecology, 1983, 64: 681-687
[15] Johnson D M, Smith W K. Low clouds and cloud immersion enhance photosynthesis in understory species of a southern Appalachian spruce-fir forest (USA)[J]. American Journal of Botany, 2006, 93 (11): 1625-1632
[16] 蒋有绪, 王伯荪, 臧润国, 等.海南岛热带林生物多样性及其形成机制[M]. 北京: 科学出版社, 2002:1-30
[17] 陈德祥, 李意德, 骆土寿, 等. 海南岛尖峰岭热带山地雨林下层乔木中华厚壳桂光合生理生态特性的研究[J]. 林业科学研究, 2003, 16(5): 540-547
[18] 陈德祥, 李意德, 骆土寿, 等. 短期CO2浓度升高对雨林树种盘壳栎光合特性的影响[J]. 生态学报, 2004, 24(8): 1622-1628
[19] 骆土寿, 李意德, 陈德祥, 等. 热带山地雨林恢复演替中优势树种黄桐气体交换对环境的响应[J]. 生态学报, 2003, 23(9): 1765-1772
[20] 刘福德, 王中生, 张 明, 等. 海南岛热带山地雨林幼苗优树光合与叶氮、叶磷及叶面积的关系[J]. 生态学报, 2007, 27(11): 4651-4661
[21] 张 明, 王文进, 刘福德, 等. 海南热带山地雨林幼苗幼树的光合能力与水分利用效率[J]. 应用生态学报, 2007, 18(10): 2160-2166
[22] 杨小波. 不同演替阶段森林群落典型种苗木叶形态解剖结构比较研究[J]. 海南大学学报:自然科学版, 1997, 15(3): 212-217
[23] 粟 娟, 王德祯, 符史深. 海南岛尖峰岭热带树木园主要树种的物候研究[J]. 林业科学研究, 1994, 7(3): 294-300
[24] 蒋有绪, 卢俊培. 中国海南岛尖峰岭热带林生态系统[M]. 北京: 科学出版社, 1991:256-283
[25] Escalona J M, Flexas J, Medrano H. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-growen grapevines[J]. Australian Journal of Plant Physiology, 1999, 16: 421-433
[26] Bassman J , Zwier J C. Gas exchange characteristics of Populus trichocarpa , Populus deltoids and Populus trichocarpa × P. deltoids clone[J]. Tree Physiology, 1991, 8: 145-159
[27] Huante P, Rincón E. Responses to light changes in tropical deciduous woody seedlings with contrasting growth rates[J]. Oecologia, 1998, 113: 53-66
[28] Poorter L, Arets E J M M. Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis[J]. Plant Ecology, 2003, 166: 295-306
[29] Delagrange S, Messier C, Lechowicz M J, et al. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability[J]. Tree Physiology, 2004, 24: 775-784
[30] Duan B, Lu Y, Yin C, et al. Physiological responses to drought and shade in two contrasting Picea asperata populations[J]. Physiologia Plantarum, 2005, 124: 476-484
[31] Grantz D A, Moore P H, Zeiger E. Stomatal responses to light and humidity in sugarcane: prediction of daily time courses and identification of potential selection criteria[J]. Plant, Cell and Environment, 1987, 10: 197-204
[32] Valladares F, Pearcy R W. Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia[J]. Plant, Cell and Environment, 1997, 20: 25-36
[33] Bazzaz F A. The physiological ecology of plant succession[J]. Annual Review of Ecology and Systematics, 1979, 10: 351-371