[1] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6. doi: 10.3773/j.issn.1005-264x.2010.01.002
[2] Schimel D S. All life is chemical[J]. BioScience, 2003, 53(5): 521-524. doi: 10.1641/0006-3568(2003)053[0521:ALIC]2.0.CO;2
[3] Michaels A F. The ratios of life. Science[J]. Science, 2003, 300(5621): 906-907. doi: 10.1126/science.1083140
[4] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812): 578-580. doi: 10.1038/35046058
[5] McGroddy M E, Daufresne T, Hedin L O. Scaling of C: N: P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios[J]. Ecology, 2004, 85(9): 2390-2401. doi: 10.1890/03-0351
[6] Schade J D, Espeleta J F, Klausmeier C A, et al. A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand[J]. Oikos, 2005, 109(1): 40-51. doi: 10.1111/j.0030-1299.2005.14050.x
[7] Hall S R, Leibold M A, Lytle D A, et al. Inedible producers in food webs: Controls on stoichiometric food quality and composition of grazers[J]. American Naturalist, 2006, 167(5): 628-637. doi: 10.1086/503059
[8] 施家月, 王希华, 闫恩荣, 等. 浙江天童常见植物幼树器官的氮磷养分特征[J]. 华东师范大学学报: 自然科学版, 2006, 2006(2): 121-129. doi: 10.3969/j.issn.1000-5641.2006.02.019
[9] 常云妮, 钟全林, 程栋梁, 等. 尤溪天然米槠林植物碳氮磷的化学计量特征及其分配格局[J]. 植物资源与环境学报, 2013, 22(3): 1-10. doi: 10.3969/j.issn.1674-7895.2013.03.01
[10] 陈亚南, 马露莎, 张向茹, 等. 陕西黄土高原刺槐枯落叶生态化学计量学特征[J]. 生态学报, 2014, 34(15): 4412-4422
[11] 栗忠飞, 刘文胜, 张彬, 等. 西双版纳热带雨林幼树C、N、P的生态化学计量比对海拔变化的响应[J]. 中南林业科技大学学报, 2012, 32(5): 80-85. doi: 10.3969/j.issn.1673-923X.2012.05.018
[12] 石贤萌, 杞金华, 宋亮, 等. 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应[J]. 植物生态学报, 2015, 39(10): 962-970. doi: 10.17521/cjpe.2015.0093
[13] 苏凌燕, 郑德祥, 钟兆全, 等. 闽北闽粤栲天然林林隙特征及干扰状况[J]. 森林与环境学报, 2015, 35(2): 125-130.
[14] 蓝文升, 钟兆全, 郑德祥, 等. 闽北天然闽粤栲林分空间结构研究[J]. 北华大学学报: 自然科学版, 2014, 15(3): 398-403.
[15] 管大跃, 黄国泉. 闽粤栲天然林生物量及预测模型研究[J]. 福建林业科技, 2000, 27(2): 34-36.
[16] 李俊清. 森林生态学[M]. 北京: 高等教育出版社, 2010: 224-226.
[17] 栗忠飞, 郭盘江, 刘文胜, 等. 哀牢山常绿阔叶林幼树C、N、P生态化学计量特征[J]. 东北林业大学学报, 2013, 41(4): 22-26. doi: 10.3969/j.issn.1000-5382.2013.04.006
[18] 董鸣. 陆地生物群落调查观测与分析[M]. 北京: 中国标准出版社, 1997: 154-155.
[19] Krieger H, Schaefer H, Peng L. Growth dynamics of a planted Eucalyptus exseria (F. Muell) stand in south China: adaptation of generic a simulation model[M]. Kassel: Kassel University Press, 1990: 10-15.
[20] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006. doi: 10.1073/pnas.0403588101
[21] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x
[22] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665-2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
[23] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540-550. doi: 10.1046/j.1461-0248.2000.00185.x
[24] 邬畏, 何兴东, 周启星. 生态系统氮磷比化学计量特征研究进展[J]. 中国沙漠, 2010, 30(2): 296-302.
[25] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523-534. doi: 10.1046/j.1365-2664.2003.00820.x
[26] 阎恩荣, 王希华, 周武. 天童常绿阔叶林演替系列植物群落的N∶P化学计量特征[J]. 植物生态学报, 2008, 32(1): 13-22. doi: 10.3773/j.issn.1005-264x.2008.01.002
[27] 王恩熙, 谢锦升, 杨柳明, 等. 中亚热带杉木人工老龄林林下植被叶片碳氮磷化学计量特征[J]. 亚热带资源与环境学报, 2015, 10(4): 31-37. doi: 10.3969/j.issn.1673-7105.2015.04.005
[28] 周丽, 张卫强, 唐洪辉, 等. 南亚热带中幼龄针阔混交林生态化学计量特征[J]. 生态环境学报, 2014, 23(11): 1732-1738. doi: 10.3969/j.issn.1674-5906.2014.11.002
[29] 羊留冬, 杨燕, 王根绪, 等. 短期增温对贡嘎山峨眉冷杉幼苗生长及其CNP化学计量学特征的影响[J]. 生态学报, 2011, 31(13): 3668-3676.