[1] Japet W, Zhou D W, Zhang H X, et al. Evidence of phenotypic plasticity in the response of Fagopyrum esculentum to population density and sowing date[J]. Journal of Plant Biology, 2009, 52(4): 303-311. doi: 10.1007/s12374-009-9037-7
[2] Maherali H, Delucia E H. Influence of climate-driven shifts in biomass allocation on water transport and storage in ponderosa pine[J]. Oecologia, 2001, 129(4): 481-489. doi: 10.1007/s004420100758
[3] 杨元武, 王根轩, 李希来, 等. 植物密度调控及其对环境变化响应的研究进展[J]. 生态学杂志, 2011, 30(8): 1813-1821.
[4] 陈青青, 李德志. 根系隔离条件下的谷子亲缘识别[J]. 植物生态学报, 2015, 39(12): 1188-1197. doi: 10.17521/cjpe.2015.0115
[5] 张永丽, 肖凯, 李雁鸣. 种植密度对杂种小麦C6-38/Py85-1旗叶光合特性和产量的调控效应及其生理机制[J]. 作物学报, 2005, 31 (4): 498-505. doi: 10.3321/j.issn:0496-3490.2005.04.017
[6] Sufirez N. Leaf construction cost in Avicennia germinans as afected by salinity under field conditions[J]. Biologia Plantarum, 2005, 49(1): 111-116. doi: 10.1007/s10535-005-1116-0
[7] Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high and low rainfall, and high and low nutrient habitats[J]. Functional Ecology, 2001, 15(15): 423-434.
[8] Li G Y, Yang D M, Sun S C. Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude[J]. Functional Ecology, 2008, 22(4): 557-564. doi: 10.1111/j.1365-2435.2008.01407.x
[9] Wright J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. doi: 10.1038/nature02403
[10] 祝介东, 孟婷婷, 倪健, 等. 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异[J]. 植物生态学报, 2011, 35(7): 687-698.
[11] Milla R, Reich P B. The scaling of leaf area and mass: the cost of light interception increases with leaf size[J]. Proceedings of the royal society B, 2007, 274(1622): 2109-2114. doi: 10.1098/rspb.2007.0417
[12] Niklas K J, Cobb E D, Niinemets ü, et al. "Diminishing returns" in the scaling of functional leaf traits across and within species groups[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21): 8891-8896. doi: 10.1073/pnas.0701135104
[13] Lambers H, Poorter H. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences[J]. Advances in Ecological Research, 2004, 34: 283-362.
[14] 方伟, 林新春, 洪平, 等. 苦竹生长发育规律研究[J]. 浙江林学院学报, 2005, 22(1): 1-5.
[15] 高培军, 郑郁善, 陈礼光, 等. 苦竹地下竹鞭结构生长规律调查[J]. 福建林业科技, 2003, 30(1): 5-8.
[16] 郑容妹, 郑郁善, 丁闽锋, 等. 苦竹生物量模型的研究[J]. 福建林学院学报, 2003, 23(1): 61-64. doi: 10.3969/j.issn.1001-389X.2003.01.015
[17] 蒋俊明, 费世民, 李吉跃, 等. 苦竹各器官主要营养元素分布及采伐的养分输出[J]. 四川林业科技, 2007, 28(2): 15-19. doi: 10.3969/j.issn.1003-5508.2007.02.004
[18] 林新春, 黄必恒, 孙培金, 等. 苦竹林立竹密度和施肥效应研究[J]. 林业科技, 2007, 32(40): 19-22.
[19] Warton D I, Wright I, Falster D S, et al. Bivariate line-fitting methods for allometry[J]. Biological Reviews, 2006, 81(2): 259-291. doi: 10.1017/S1464793106007007
[20] Huey R B, Gilchrist G W, Carlson M L, et al. Rapid evolution of a geographic cline in size in an introduced fly[J]. Science, 2000, 287(5451): 308-309. doi: 10.1126/science.287.5451.308
[21] Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(4): 207-215. doi: 10.1078/1433-8319-00083
[22] 顾大形, 陈双林, 郭子武, 等. 四季竹立竹表型可塑性的林分密度效应[J]. 生态学杂志, 2010, 29(8): 1542-1547.
[23] 关佳威, 姬明飞, 王志强, 等. 不同种植密度条件下单混种作物的生长曲线[J]. 草业科学, 2015, 32(8): 1243-1251.
[24] 陈仁飞, 姬明飞, 关佳威, 等. 植物对称性竞争与非对称性竞争研究进展及展望[J]. 植物生态学报, 2015, 39(5): 530-540.
[25] 陈智裕, 李琦, 邹显花, 等. 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响[J]. 植物生态学报, 2016, 40(2): 177-186.
[26] 郭子武, 杨清平, 李迎春, 等. 密度对四季竹地上生物量分配格局及异速增长模式的制约性调节[J]. 生态学杂志, 2013, 32(3): 515-521.
[27] 韦兰英, 安慧, 上官周平. 刺槐叶片可塑生长的密度依赖性[J]. 西北植物学报, 2008, 28(9): 1856-1861. doi: 10.3321/j.issn:1000-4025.2008.09.023
[28] Chown S L, Gaston K J, Robinson D. Macrophysiology: large-scale patterns in physiological traits and their ecological implications[J]. Functional Ecology, 2004, 18(2): 159-167. doi: 10.1111/j.0269-8463.2004.00825.x
[29] Vendramini F, Díaz S, Gurvich D E, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytologist, 2002, 154(1): 147-157. doi: 10.1046/j.1469-8137.2002.00357.x
[30] Niinemets ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs[J]. Ecology, 2001, 82(2): 453-469. doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
[31] Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span[J]. The Journal of Ecology, 2002, 90(3): 534-543. doi: 10.1046/j.1365-2745.2002.00689.x
[32] 朱强根, 金爱武, 王意锟, 等. 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析[J]. 植物生态学报, 2013, 37 (9): 811-819.
[33] 杨琼, 李征珍, 傅强, 等. 胡杨(Populus euphratica)叶异速生长随发育的变化[J]. 中国沙漠, 2016, 36(3): 659-665.
[34] Calvoalvarado J C, Mcdowell N G, Waring R H. Allometric relationships predicting foliar biomass and leaf area: sapwood area ratio from tree height in five Costa Rican rain forest species[J]. Tree Physiology, 2008, 28(28): 1601-1608.
[35] 姚婧, 李颖, 魏丽萍, 等. 东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化[J]. 生态学报, 2013, 33(13): 3907-3915.
[36] 武瑞鑫, 邵新庆, 胡新振, 等. 披针叶黄华茎叶性状对不同草地管理措施的响应及其生长关系研究[J]. 草地学报, 2015, 23(3): 476-482.
[37] Poorter H, Evans J R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area[J]. Oecologia, 1998, 116(1): 26-37.
[38] Garnier E, Salager J L, Laurent G, et al. Relationships between photosynthesis, nitrogen and leaf structure in 14 grass species and their dependence on the basis of expression[J]. The New Phytologist, 1999, 143(1): 119-129. doi: 10.1046/j.1469-8137.1999.00426.x