[1] Cenkowski S, Yakimishen R, Przybylski R, et al. Quality of extracted sea buckthorn seed and pulp oil[J]. Canadian Biosystems Engineering, 2006, 48(3): 9-16.
[2] Yang B R, Kallio H. Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L. ) berries of different origins[J]. Journal of Agricultural and Food Chemistry, 2001, 49(4): 1939-1947. doi: 10.1021/jf001059s
[3] Ruan C J, Rumpunen K, Nybom H. Advances in improvement of quality and resistance in a multipurpose crop: sea buckthorn[J]. Critical Reviews in Biotechnology, 2013, 33(2): 126-144. doi: 10.3109/07388551.2012.676024
[4] Fatima T, Snyder C L, Schroeder W R, et al. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L. ) berry and the transcriptome of the mature seed[J]. Plos One, 2012, 7(4): e34099. doi: 10.1371/journal.pone.0034099
[5] Yang B R, Kallio H. Analysis of Triacylglycerols of seeds and berries of sea buckthorn (Hippophae rhamnoides) of different origins by mass spectrometry and tandem mass spectrometry[J]. Lipid, 2006, 41(4): 381-392. doi: 10.1007/s11745-006-5109-3
[6] Ramli U S, Baker D S, Quant P A, et al. Use of control analysis to study the regulation of plant lipid biosynthesis[J]. Biochemical Society Transactions, 2002, 30(6): 1043-1046. doi: 10.1042/bst0301043
[7] Vigeolas H, Waldeck P, Zank T, et al. Increasing seed oil content in oil-seed rape (Brassica napus L. ) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter[J]. Plant Biotechnology Journal, 2007, 5(3): 431-441. doi: 10.1111/j.1467-7652.2007.00252.x
[8] 张霞, 张桦, 张富春. 盐胁迫下盐穗木甘油醛-3-磷酸脱氢酶基因的表达与亚细胞定位分析[J]. 西北植物学报, 2015, 35(7): 1283-1288.
[9] Remize F, Barnavon L, Dequin S. Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2001, 3(4): 301-312. doi: 10.1006/mben.2001.0197
[10] Vigeolas H, Geigenberger P. Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta[J]. Planta, 2004, 219(5): 827-835.
[11] Guo H H, Wang T T, Li Q Q, et al. Two novel diacylglycerol acyltransferase genes from Xanthoceras sorbifolia are responsible for its seed oil content[J]. Gene, 2013, 527(1): 266-274. doi: 10.1016/j.gene.2013.05.076
[12] Zheng P, Allen W B, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize[J]. Nature Genetics, 2008, 40(3): 367-372. doi: 10.1038/ng.85
[13] Jako C, Kumar A, Wei Y D, et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight[J]. Plant Physiology, 2001, 126(2): 861-874. doi: 10.1104/pp.126.2.861
[14] Cases S, Smith S J, Zheng Y, et al. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis[J]. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(22): 13018-13023. doi: 10.1073/pnas.95.22.13018
[15] Kroon J T M, Wei W X, Simon W J, et al. Identification and functional expression of a type 2 acyl-CoA: diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals[J]. Phytochemistry, 2006, 67(23): 254-259.
[16] Li R, Yu K, Hildebrand D F. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants[J]. Lipids, 2010, 45(2): 145-157. doi: 10.1007/s11745-010-3385-4
[17] Chen Y C, Cui Q Q, Xu Y J, et al. Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana[J]. Molecular Genetics and Genomics, 2015, 290(4): 1605-1613. doi: 10.1007/s00438-015-1011-0
[18] 阮成江, 李群. 基因调控种子含油量研究进展及生物柴油用海滨锦葵遗传改良策略[J]. 可再生能源, 2008, 26(4): 35-40. doi: 10.3969/j.issn.1671-5292.2008.04.009
[19] Vanhercke T, EI Tahchy A, Shrestha P, et al. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants[J]. FEBS Letters, 2013, 587(4): 364-369. doi: 10.1016/j.febslet.2012.12.018
[20] Ding J, Ruan C J, Bao Y H, et al. Analysis of genetic relationships in sea buckthorn (Hippophae rhamnoides) germplasm from China and other countries using ISSR markers[J]. Journal of Horticultural Science & Biotechnology, 2015, 90(6): 599-606.
[21] Christie W W. Fatty acids and lipids: Structures, extraction and fractionation into classes[M]//Christie W W. Gas Chromatography and Lipids. Glasgow, UK: The Oily Press Ltd., 1989: 11-42.
[22] Vuorinen A L, Markkinen N, Kalpio M, et al. Effect of growth environment on the gene expression and lipids related to triacylglycerol biosynthesis in sea buckthorn (Hippophae rhamnoides) berries[J]. Food Research International, 2015, 77(3): 608-619.
[23] Wang X J, Liu A Z, Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha Inchi (Plukenetia volubilis L. )[J]. Lipids, 2014, 49(10): 1019-1031. doi: 10.1007/s11745-014-3938-z
[24] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6): 1101-1108. doi: 10.1038/nprot.2008.73
[25] Xu R H, Wang R L, Liu A Z. Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L. )[J]. Biomass and Bioenergy, 2011, 35(5): 1683-1692. doi: 10.1016/j.biombioe.2011.01.001
[26] Chen G Q, Turner C, He X H, et al. Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in castor bean (Ricinus communis L. )[J]. Lipids, 2007, 42(3): 263-274. doi: 10.1007/s11745-007-3022-z
[27] 吴永美, 毛雪, 王书建, 等. 植物ω-7脂肪酸的系统代谢工程[J]. 植物学报, 2011, 46(5): 575-585.