[1] Initiative T A G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814):796-815. doi: 10.1038/35048692
[2] Ossowski S, Schneeberger K, Clark R M, et al. Sequencing of natural strains of Arabidopsis thaliana with short reads[J]. Genome Res, 2008, 18(12):2024-2033. doi: 10.1101/gr.080200.108
[3] van Dijk E L, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology[J]. Trends in Genetics, 2014, 30(9):418-426. doi: 10.1016/j.tig.2014.07.001
[4] Mayer K F, Waugh R, Brown J W, et al. A physical, genetic and functional sequence assembly of the barley genome[J]. Nature, 2012, 491(7426):711-716. doi: 10.1038/nature11543
[5] Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa[J]. Nature, 2017, 542(7641):307-312. doi: 10.1038/nature21370
[6] Myburg A A, Grattapaglia D, Tuskan G A, et al. The genome of Eucalyptus grandis[J]. Nature, 2014, 510(7505):356-362. doi: 10.1038/nature13308
[7] Ma T, Wang J, Zhou G, et al. Genomic insights into salt adaptation in a desert poplar[J]. Nature Communications, 2013, 4:2797. doi: 10.1038/ncomms3797
[8] Lamesch P, Berardini T Z, Li D, et al. The Arabidopsis Information Resource (TAIR):improved gene annotation and new tools[J]. Nucleic Acids Res, 2012, 40(Database issue):D1202-1210.
[9] Youens-Clark K, Buckler E, Casstevens T, et al. Gramene database in 2010:updates and extensions[J]. Nucleic Acids Res, 2011, 39(Database issue):D1085-1094.
[10] Huang X, Lu T, Han B. Resequencing rice genomes:an emerging new era of rice genomics[J]. Trends in Genetics, 2013, 29(4):225-232. doi: 10.1016/j.tig.2012.12.001
[11] Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population[J]. Nat Genet, 2011, 43(2):159-162. doi: 10.1038/ng.746
[12] Xiao Y, Liu H, Wu L, et al. Genome-wide association studies in maize:praise and stargaze[J]. Molecular Plant, 2017, 10(3):359-374. doi: 10.1016/j.molp.2016.12.008
[13] Zhang J, Singh A, Mueller D S, et al. Genome-wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean[J]. Plant J, 2015, 84(6):1124-1136. doi: 10.1111/tpj.13069
[14] Aravind L. Guilt by association:contextual information in genome analysis[J]. Genome Res, 2000, 10(8):1074-1077. doi: 10.1101/gr.10.8.1074
[15] Schaefer R J, Michno J M, Myers C L. Unraveling gene function in agricultural species using gene co-expression networks[J]. Biochimica et Biophysica Acta, 2017, 1860(1):53-63. doi: 10.1016/j.bbagrm.2016.07.016
[16] Lee I, Ambaru B, Thakkar P, et al. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana[J]. Nat Biotechnol, 2010, 28(2):149-156. doi: 10.1038/nbt.1603
[17] Lee I, Seo Y S, Coltrane D, et al. Genetic dissection of the biotic stress response using a genome-scale gene network for rice[J]. Proc Natl Acad Sci USA, 2011, 108(45):18548-18553. doi: 10.1073/pnas.1110384108
[18] Lee I, Date S V, Adai A T, et al. A probabilistic functional network of yeast genes[J]. Science, 2004, 306(5701):1555-1558. doi: 10.1126/science.1099511
[19] Costello J C, Dalkilic M M, Beason S M, et al. Gene networks in Drosophila melanogaster:integrating experimental data to predict gene function[J]. Genome Biol, 2009, 10(9):R97. doi: 10.1186/gb-2009-10-9-r97
[20] Liu Q, Ding C, Chu Y, et al. PoplarGene:poplar gene network and resource for mining functional information for genes from woody plants[J]. Scientific Reports, 2016, 6:31356. doi: 10.1038/srep31356
[21] Neale D B, Kremer A. Forest tree genomics:growing resources and applications[J]. Nat Rev Genet, 2011, 12(2):111-122. doi: 10.1038/nrg2931
[22] Taylor G. Populus:Arabidopsis for forestry. Do we need a model tree?[J]. Ann Bot, 2002, 90(6):681-689. doi: 10.1093/aob/mcf255
[23] Wullschleger S D, Tuskan G A, DiFazio S P. Genomics and the tree physiologist[J]. Tree Physiol, 2002, 22(18):1273-1276. doi: 10.1093/treephys/22.18.1273
[24] 张勇, 张守攻, 齐力旺, 等.杨树——林木基因组学研究的模式物种[J].植物学通报, 2006(3):286-293. doi: 10.3969/j.issn.1674-3466.2006.03.009
[25] 苏晓华, 丁昌俊, 马常耕.我国杨树育种的研究进展及对策[J].林业科学研究, 2010, 23(1):31-37.
[26] 林善枝.植物学:中国杨树分子遗传改良研究进展[J].中国学术期刊文摘, 2007(1):5-5.
[27] 胥猛, 潘惠新, 张博, 等.林木遗传改良中的分子生物学研究进展[J].林业科学, 2009, 45(1):136-143. doi: 10.3321/j.issn:1001-7488.2009.01.025
[28] 苏晓华.我国杨树育种发展策略[C].全国林木遗传育种大会: 2008.
[29] Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793):1596-1604. doi: 10.1126/science.1128691
[30] Fahrenkrog A M, Neves L G, Resende M F, et al. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides[J]. New Phytol, 2017, 213(2):799-811. doi: 10.1111/nph.14154
[31] Du Q, Gong C, Wang Q, et al. Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies[J]. New Phytol, 2016, 209(3):1067-1082. doi: 10.1111/nph.2016.209.issue-3
[32] Xie J, Tian J, Du Q, et al. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis[J]. Journal of Experimental Botany, 2016, 67(11):3325-3338. doi: 10.1093/jxb/erw151
[33] Lee T, Yang S, Kim E, et al. AraNet v2:an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species[J]. Nucleic Acids Res, 2015, 43(Database issue):D996-1002.
[34] Lee T, Oh T, Yang S, et al. RiceNet v2:an improved network prioritization server for rice genes[J]. Nucleic Acids Res, 2015, 43(W1):W122-127. doi: 10.1093/nar/gkv253
[35] Zhu G, Wu A, Xu X J, et al. PPIM:A protein-protein interaction database for maize[J]. Plant Physiol, 2016, 170(2):618-626. doi: 10.1104/pp.15.01821
[36] Rhee S Y, Mutwil M. Towards revealing the functions of all genes in plants[J]. Trends Plant Sci, 2014, 19(4):212-221. doi: 10.1016/j.tplants.2013.10.006
[37] Barrett T, Wilhite S E, Ledoux P, et al. NCBI GEO:archive for functional genomics data sets-update[J]. Nucleic Acids Res, 2013, 41(Database issue):D991-995.
[38] Kolesnikov N, Hastings E, Keays M, et al. ArrayExpress update-simplifying data submissions[J]. Nucleic Acids Res, 2015, 43(Database issue):D1113-1116.
[39] Dash S, Van Hemert J, Hong L, et al. PLEXdb:gene expression resources for plants and plant pathogens[J]. Nucleic Acids Res, 2012, 40(Database issue):D1194-1201.
[40] Usadel B, Obayashi T, Mutwil M, et al. Co-expression tools for plant biology:opportunities for hypothesis generation and caveats[J]. Plant, Cell & Environment, 2009, 32(12):1633-1651.
[41] Mutwil M, Usadel B, Schutte M, et al. Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm[J]. Plant Physiol, 2010, 152(1):29-43. doi: 10.1104/pp.109.145318
[42] Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1):57-63. doi: 10.1038/nrg2484
[43] 姜春雷, 赵锐, 吕林峰, 等.茄科雷尔氏菌蛋白质相互作用网络预测及分析[J].应用与环境生物学报, 2012, 18(1):139-146.
[44] Liu Q, Jiang C, Xu Z, et al. Analysis of protein interaction network and function of Staphylococcus aureus[J]. Acta Microbiologica Sinica, 2009, 49(1):56-63.
[45] 孙景春, 徐晋麟, 曹建平, 等.钩端螺旋体蛋白质相互作用网络预测与系统分析[J].科学通报, 2006, 51(9):1049-1057. doi: 10.3321/j.issn:0023-074X.2006.09.009
[46] Jiang Z. Protein function predictions based on the phylogenetic profile method[J]. Critical Reviews in Biotechnology, 2008, 28(4):233-238. doi: 10.1080/07388550802512633
[47] Korbel J O, Jensen L J, von Mering C, et al. Analysis of genomic context:prediction of functional associations from conserved bidirectionally transcribed gene pairs[J]. Nat Biotechnol, 2004, 22(7):911-917. doi: 10.1038/nbt988
[48] Price M N, Huang K H, Alm E J, et al. A novel method for accurate operon predictions in all sequenced prokaryotes[J]. Nucleic Acids Res, 2005, 33(3):880-892. doi: 10.1093/nar/gki232
[49] Bowers P M, Pellegrini M, Thompson M J, et al. Prolinks:a database of protein functional linkages derived from coevolution[J]. Genome Biol, 2004, 5(5):R35. doi: 10.1186/gb-2004-5-5-r35
[50] Shin J, Lee T, Kim H, et al. Complementarity between distance-and probability-based methods of gene neighbourhood identification for pathway reconstruction[J]. Molecular BioSystems, 2014, 10(1):24-29. doi: 10.1039/C3MB70366E
[51] Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool[J]. Journal of Molecular Biology, 1990, 215(3):403-410. doi: 10.1016/S0022-2836(05)80360-2
[52] Remm M, Storm C E, Sonnhammer E L. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons[J]. Journal of Molecular Biology, 2001, 314(5):1041-1052. doi: 10.1006/jmbi.2000.5197
[53] Sonnhammer E L, Ostlund G. InParanoid 8:orthology analysis between 273 proteomes, mostly eukaryotic[J]. Nucleic Acids Res, 2015, 43(Database issue):D234-239.
[54] Zhou D, He Y. Extracting interactions between proteins from the literature[J]. Journal of Biomedical Informatics, 2008, 41(2):393-407. doi: 10.1016/j.jbi.2007.11.008
[55] Li C, Liakata M, Rebholz-Schuhmann D. Biological network extraction from scientific literature:state of the art and challenges[J]. Briefings in Bioinformatics, 2014, 15(5):856-877. doi: 10.1093/bib/bbt006
[56] Huang M, Zhu X, Hao Y, et al. Discovering patterns to extract protein-protein interactions from full texts[J]. Bioinformatics, 2004, 20(18):3604-3612. doi: 10.1093/bioinformatics/bth451
[57] Hao Y, Zhu X, Huang M, et al. Discovering patterns to extract protein-protein interactions from the literature:Part Ⅱ[J]. Bioinformatics, 2005, 21(15):3294-3300. doi: 10.1093/bioinformatics/bti493
[58] Temkin J M, Gilder M R. Extraction of protein interaction information from unstructured text using a context-free grammar[J]. Bioinformatics, 2003, 19(16):2046-2053. doi: 10.1093/bioinformatics/btg279
[59] Lazzarini N, Widera P, Williamson S, et al. Functional networks inference from rule-based machine learning models[J]. BioData Mining, 2016, 9(1):28.
[60] Papanikolaou N, Pavlopoulos G A, Theodosiou T, et al. Protein-protein interaction predictions using text mining methods[J]. Methods, 2015, 74:47-53. doi: 10.1016/j.ymeth.2014.10.026
[61] Marcotte E M, Pellegrini M, Ng H L, et al. Detecting protein function and protein-protein interactions from genome sequences[J]. Science, 1999, 285(5428):751-753. doi: 10.1126/science.285.5428.751
[62] Enright A J, Iliopoulos I, Kyrpides N C, et al. Protein interaction maps for complete genomes based on gene fusion events[J]. Nature, 1999, 402(6757):86-90. doi: 10.1038/47056
[63] Marcotte C J, Marcotte E M. Predicting functional linkages from gene fusions with confidence[J]. Applied Bioinformatics, 2002, 1(2):93-100.
[64] Finn R D, Coggill P, Eberhardt R Y, et al. The Pfam protein families database:towards a more sustainable future[J]. Nucleic Acids Res, 2016, 44(D1):D279-285. doi: 10.1093/nar/gkv1344
[65] Finn R D, Attwood T K, Babbitt P C, et al. InterPro in 2017-beyond protein family and domain annotations[J]. Nucleic Acids Res, 2017, 45(D1):D190-D199. doi: 10.1093/nar/gkw1107
[66] Fields S, Song O. A novel genetic system to detect protein-protein interactions[J]. Nature, 1989, 340(6230):245-246. doi: 10.1038/340245a0
[67] Causier B. Studying the interactome with the yeast two-hybrid system and mass spectrometry[J]. Mass Spectrometry Reviews, 2004, 23(5):350-367. doi: 10.1002/(ISSN)1098-2787
[68] Phizicky E, Bastiaens P I, Zhu H, et al. Protein analysis on a proteomic scale[J]. Nature, 2003, 422(6928):208-215. doi: 10.1038/nature01512
[69] Bartel P L, Roecklein J A, SenGupta D, et al. A protein linkage map of Escherichia coli bacteriophage T7[J]. Nat Genet, 1996, 12(1):72-77. doi: 10.1038/ng0196-72
[70] Walhout A J, Sordella R, Lu X, et al. Protein interaction mapping in C. elegans using proteins involved in vulval development[J]. Science, 2000, 287(5450):116-122. doi: 10.1126/science.287.5450.116
[71] de Folter S, Immink R G, Kieffer M, et al. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors[J]. Plant Cell, 2005, 17(5):1424-1433. doi: 10.1105/tpc.105.031831
[72] Ding X, Richter T, Chen M, et al. A rice kinase-protein interaction map[J]. Plant Physiol, 2009, 149(3):1478-1492. doi: 10.1104/pp.108.128298
[73] Forler D, Kocher T, Rode M, et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes[J]. Nat Biotechnol, 2003, 21(1):89-92.
[74] Van Leene J, Witters E, Inze D, et al. Boosting tandem affinity purification of plant protein complexes[J]. Trends Plant Sci, 2008, 13(10):517-520. doi: 10.1016/j.tplants.2008.08.002
[75] Gingras A C, Gstaiger M, Raught B, et al. Analysis of protein complexes using mass spectrometry[J]. Nature Reviews Molecular Cell Biology, 2007, 8(8):645-654. doi: 10.1038/nrm2208
[76] Rohila J S, Chen M, Chen S, et al. Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice[J]. Plant J, 2006, 46(1):1-13. doi: 10.1111/tpj.2006.46.issue-1
[77] Rohila J S, Chen M, Cerny R, et al. Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants[J]. Plant J, 2004, 38(1):172-181. doi: 10.1111/tpj.2004.38.issue-1
[78] Schoonheim P J, Veiga H, Pereira Dda C, et al. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach[J]. Plant Physiol, 2007, 143(2):670-683.
[79] Magliery T J, Wilson C G, Pan W, et al. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap:scope and mechanism[J]. Journal of the American Chemical Society, 2005, 127(1):146-157. doi: 10.1021/ja046699g
[80] Miller K E, Kim Y, Huh W K, et al. Bimolecular Fluorescence Complementation (BiFC) Analysis:advances and recent applications for genome-wide interaction studies[J]. Journal of Molecular Biology, 2015, 427(11):2039-2055. doi: 10.1016/j.jmb.2015.03.005
[81] Jach G, Pesch M, Richter K, et al. An improved mRFP1 adds red to bimolecular fluorescence complementation[J]. Nature Methods, 2006, 3(8):597-600. doi: 10.1038/nmeth901
[82] Bracha-Drori K, Shichrur K, Katz A, et al. Detection of protein-protein interactions in plants using bimolecular fluorescence complementation[J]. Plant J, 2004, 40(3):419-427. doi: 10.1111/tpj.2004.40.issue-3
[83] Puts G S, Spadafora N. Detection of protein-protein interactions in tobacco BY-2 cells using bimolecular fluorescence complementation[J]. Methods Mol Biol, 2016, 1342:269-277. doi: 10.1007/978-1-4939-2957-3
[84] Boruc J, Inze D, Russinova E. A high-throughput bimolecular fluorescence complementation protein-protein interaction screen identifies functional Arabidopsis CDKA/B-CYCD4/5 complexes[J]. Plant Signaling & Behavior, 2010, 5(10):1276-1281.
[85] Ni Y, Aghamirzaie D, Elmarakeby H, et al. A machine learning approach to predict gene regulatory networks in seed development in Arabidopsis[J]. Frontiers in Plant Science, 2016, 7:1936.
[86] Kim E, Hwang S, Lee I. SoyNet:a database of co-functional networks for soybean Glycine max[J]. Nucleic Acids Res, 2017, 45(D1):D1082-D1089. doi: 10.1093/nar/gkw704
[87] Consortium T G O. Expansion of the gene ontology knowledgebase and resources[J]. Nucleic Acids Res, 2017, 45(D1):D331-D338. doi: 10.1093/nar/gkw1108
[88] Kanehisa M, Goto S, Sato Y, et al. Data, information, knowledge and principle:back to metabolism in KEGG[J]. Nucleic Acids Res, 2014, 42(Database issue):D199-205.
[89] Usadel B, Poree F, Nagel A, et al. A guide to using MapMan to visualize and compare Omics data in plants:a case study in the crop species, Maize[J]. Plant, Cell & Environment, 2009, 32(9):1211-1229.
[90] Dreher K. Putting the plant metabolic network pathway databases to work:going offline to gain new capabilities[J]. Methods Mol Biol, 2014, 1083:151-171. doi: 10.1007/978-1-62703-661-0
[91] Davis J, Goadrich M. The relationship between precision-recall and ROC curves[C]//Proceedings of the 23rd international conference on Machine learning; Pittsburgh, Pennsylvania, USA. 1143874: 2006: 233-240.
[92] Pepe M S, Cai T, Longton G. Combining predictors for classification using the area under the receiver operating characteristic curve[J]. Biometrics, 2006, 62(1):221-229. doi: 10.1111/j.1541-0420.2005.00420.x
[93] Arita M. Scale-freeness and biological networks[J]. J Biochem, 2005, 138(1):1-4. doi: 10.1093/jb/mvi094
[94] Girvan M, Newman M E. Community structure in social and biological networks[J]. Proc Natl Acad Sci U S A, 2002, 99(12):7821-7826. doi: 10.1073/pnas.122653799
[95] Adamcsek B, Palla G, Farkas I J, et al. CFinder:locating cliques and overlapping modules in biological networks[J]. Bioinformatics, 2006, 22(8):1021-1023. doi: 10.1093/bioinformatics/btl039
[96] Shannon P, Markiel A, Ozier O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504. doi: 10.1101/gr.1239303
[97] You Q, Xu W, Zhang K, et al. ccNET:Database of co-expression networks with functional modules for diploid and polyploid Gossypium[J]. Nucleic Acids Res, 2017, 45(D1):D1090-D1099. doi: 10.1093/nar/gkw910
[98] Gu H, Zhu P, Jiao Y, et al. PRIN:a predicted rice interactome network[J]. BMC Bioinformatics, 2011, 12:161. doi: 10.1186/1471-2105-12-161
[99] Xia L, Zou D, Sang J, et al. Rice Expression Database (RED):An integrated RNA-Seq-derived gene expression database for rice[J]. Journal of Genetics and Genomics, 2017, 44(5):235-241. doi: 10.1016/j.jgg.2017.05.003
[100] Yu J, Zhang Z, Wei J, et al. SFGD:a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways[J]. BMC Genomics, 2014, 15:271. doi: 10.1186/1471-2164-15-271
[101] Kim H, Kim B S, Shim J E, et al. TomatoNet:A Genome-wide co-functional network for unveiling complex traits of tomato, a model crop for fleshy fruits[J]. Molecular Plant, 2017, 10(4):652-655. doi: 10.1016/j.molp.2016.11.010
[102] Wong D C, Sweetman C, Drew D P, et al. VTCdb:a gene co-expression database for the crop species Vitis vinifera (grapevine)[J]. BMC Genomics, 2013, 14:882. doi: 10.1186/1471-2164-14-882
[103] Aoki Y, Okamura Y, Tadaka S, et al. ATTED-Ⅱ:A plant coexpression database towards lineage-specific coexpression[J]. Plant & Cell Physiology, 2016, 57(1):e5.
[104] Kourmpetis Y A, van Dijk A D, van Ham R C, et al. Genome-wide computational function prediction of Arabidopsis proteins by integration of multiple data sources[J]. Plant Physiol, 2011, 155(1):271-281. doi: 10.1104/pp.110.162164
[105] Ogata Y, Suzuki H, Sakurai N, et al. CoP:a database for characterizing co-expressed gene modules with biological information in plants[J]. Bioinformatics, 2010, 26(9):1267-1268. doi: 10.1093/bioinformatics/btq121
[106] De Bodt S, Hollunder J, Nelissen H, et al. CORNET 2.0:integrating plant coexpression, protein-protein interactions, regulatory interactions, gene associations and functional annotations[J]. New Phytol, 2012, 195(3):707-720. doi: 10.1111/j.1469-8137.2012.04184.x
[107] Proost S, Mutwil M. PlaNet:Comparative Co-Expression Network Analyses for Plants[J]. Methods Mol Biol, 2017, 1533:213-227. doi: 10.1007/978-1-4939-6658-5
[108] Kudo T, Terashima S, Takaki Y, et al. PlantExpress:A database integrating oryzaExpress and arthaExpress for single-species and cross-species gene expression network analyses with microarray-based transcriptome data[J]. Plant & Cell Physiology, 2017, 58(1):e1.
[109] Sundell D, Mannapperuma C, Netotea S, et al. The plant genome Integrative explorer resource:PlantGenIE.org[J]. New Phytol, 2015, 208(4):1149-1156. doi: 10.1111/nph.13557
[110] Yim W C, Yu Y, Song K, et al. PLANEX:the plant co-expression database[J]. BMC Plant Biology, 2013, 13:83. doi: 10.1186/1471-2229-13-83
[111] Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1:protein-protein interaction networks, with increased coverage and integration[J]. Nucleic Acids Res, 2013, 41(Database issue):D808-815.
[112] Katari M S, Nowicki S D, Aceituno F F, et al. VirtualPlant:a software platform to support systems biology research[J]. Plant Physiol, 2010, 152(2):500-515. doi: 10.1104/pp.109.147025
[113] Mutwil M, Klie S, Tohge T, et al. PlaNet:combined sequence and expression comparisons across plant networks derived from seven species[J]. Plant Cell, 2011, 23(3):895-910. doi: 10.1105/tpc.111.083667
[114] Lorenz W W, Alba R, Yu Y S, et al. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)[J]. BMC Genomics, 2011, 12:264. doi: 10.1186/1471-2164-12-264
[115] Gronlund A, Bhalerao R P, Karlsson J. Modular gene expression in Poplar:a multilayer network approach[J]. New Phytol, 2009, 181(2):315-322. doi: 10.1111/j.1469-8137.2008.02668.x
[116] Cai B, Li CH, Huang J. Systematic identification of cell-wall related genes in Populus based on analysis of functional modules in co-expression network[J]. PLoS One, 2014, 9(4):e95176. doi: 10.1371/journal.pone.0095176
[117] Kavka M, Polle A. Dissecting nutrient-related co-expression networks in phosphate starved poplars[J]. PLoS One, 2017, 12(2):e0171958. doi: 10.1371/journal.pone.0171958
[118] Dash M, Yordanov Y S, Georgieva T, et al. A network of genes associated with poplar root development in response to low nitrogen[J]. Plant Signaling & Behavior, 2016, 11(8):e1214792.
[119] Lamara M, Raherison E, Lenz P, et al. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce[J]. New Phytol, 2016, 210(1):240-255. doi: 10.1111/nph.13762
[120] Zhang J, Elo A, Helariutta Y. Arabidopsis as a model for wood formation[J]. Current Opinion in Biotechnology, 2011, 22(2):293-299. doi: 10.1016/j.copbio.2010.11.008
[121] Taylor-Teeples M, Lin L, de Lucas M, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis[J]. Nature, 2015, 517(7536):571-575. doi: 10.1038/nature14099
[122] Davin N, Edger P P, Hefer C A, et al. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants[J]. Plant J, 2016, 86(5):376-390. doi: 10.1111/tpj.2016.86.issue-5
[123] Jokipii-Lukkari S, Sundell D, Nilsson O, et al. NorWood:a gene expression resource for evo-devo studies of conifer wood development[J]. New Phytol, 2017, 216(2):482-494. doi: 10.1111/nph.14458
[124] Raherison E S, Giguere I, Caron S, et al. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures[J]. New Phytol, 2015, 207(1):172-187. doi: 10.1111/nph.13343