[1] 刘述河, 丁朋松, 金丽凤, 等.上海地区国外树种引种调查分析[J].中国农学通报, 2011, 27(31):305-309.
[2] 孙海菁, 王树凤, 陈益泰.不同枫香种源对淹水胁迫的响应[J].南京林业大学学报:自然科学版, 2012, 36(3):43-48.
[3] 张玲, 王树凤, 陈益泰, 等. 3种枫香的根系构型及功能特征对干旱的响应[J].土壤, 2013, 45(6):1119-1126.
[4] 冷华妮, 陈益泰, 段红平, 等.磷胁迫对不同种源枫香生长及氮、磷吸收利用率的影响[J].应用生态学报, 2009, 20(4):754-760.
[5] Miyamoto S, Martinez I, Padilla M, et al. Landscape plant lists for salt tolerance assessment[R]. El Paso: Texas A&M University Agricultural Research and Extension Cente, Texas Agricultural Experiment Station, 2004.
[6] Qiao G, Zhou J, Jiang J, et al. Transformation of Liquidambar formosana L. via Agrobacterium tumefaciens using a mannose selection system and recovery of salt tolerant lines[J]. Plant Cell, Tissue and Organ Culture, 2010, 102(2):163-170. doi: 10.1007/s11240-010-9717-5
[7] Coleman-Derr D, Tringe S G. Building the crops of tomorrow:advantages of symbiont-based approaches to improving abiotic stress tolerance[J]. Frontiers in Microbiology, 2014, 6:283. doi:10.3389/fmicb.2014.00283.
[8] Qin Y, Druzhinina I S, Pan X, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances, 2016, 34(7):1245-1259. doi: 10.1016/j.biotechadv.2016.08.005
[9] Marasco R, Rolli E, Ettoumi B, et al. A drought resistance-promoting microbiome is selected by root system under desert farming[J]. PLoS One, 2012, 7(10):e48479. doi: 10.1371/journal.pone.0048479
[10] Yuan Z L, Druzhinina I S, Labbé J, et al. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity[J]. Scientific Reports, 2016, 6:32467. doi:10.1038/srep32467.
[11] Qin Y, Pan X, Kubicek C, et al. Diverse plant-associated Pleosporalean fungi from saline areas:ecological tolerance and nitrogen-status dependent effects on plant growth[J]. Frontiers in Microbiology, 2017, 8:158. doi:10.3389/fmicb.2017.00158.
[12] You Y H, Yoon H, Kang S M, et al. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay[J]. Journal of Microbiology and Biotechnology, 2012, 22(11):1549-1556. doi: 10.4014/jmb
[13] Maciá-Vicente J G, Jansson H B, Abdullah S K, et al. Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp[J]. FEMS Microbiology Ecology, 2008, 64(1):90-105.
[14] 钮旭光, 宋立超, 韩梅, 等.盐生植物翅碱蓬的内生真菌多样性分析[J].微生物学通报, 2012, 39(10):1388-1395.
[15] 赵育卉, 李连强, 湛东锐, 等.盐生海芦笋内生真菌S19的分离鉴定与抗氧化发酵条件优化[J].南京农业大学学报, 2013, 36(2):137-144.
[16] Leslie J F, Summerell B A. The Fusarium laboratory manual[M]. Ausralia:Blackwell Publishing, 2008.
[17] Rehner S A, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences:evidence for cryptic diversification and links to Cordyceps teleomorphs[J]. Mycologia, 2005, 97(1):84-98.
[18] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3):473-497. doi: 10.1111/ppl.1962.15.issue-3
[19] Padamsee M, Johansen R B, Stuckey S A, et al. The arbuscular mycorrhizal fungi colonising roots and root nodules of New Zealand kauri Agathis australis[J]. Fungal Biology, 2016, 120(5):807-817. doi: 10.1016/j.funbio.2016.01.015
[20] 孙仲序, 杨红花, 崔得才, 等.转基因杨树的抗盐性分析[J].生物工程学报, 2002, 18(4):481-485. doi: 10.3321/j.issn:1000-3061.2002.04.017
[21] Kaldorf M, Koch B, Rexer K H, et al. Patterns of interaction between Populus Esch5 and Piriformospora indica:a transition from mutualism to antagonism[J]. Plant Biology, 2005, 7(2):210-218. doi: 10.1055/s-2005-837470
[22] Pusztahelyi T, Holb I J, Pócsi I. Secondary metabolites in fungus-plant interactions[J]. Frontiers in Plant Science, 2015, 6:573.
[23] Bacon C W, Porter J K, Norred W P, et al. Production of fusaric acid by Fusarium species[J]. Applied and Environmental Microbiology, 1996, 62(11):4039-4043.
[24] 张岳平.镰刀菌真菌毒素产生与调控机制研究进展[J].生命科学, 2011, 23(3):311-316.
[25] Yates I E, Bacon C W, Hinton D M. Effects of endophytic infection by Fusarium moniliforme on corn growth and cellular morphology[J]. Plant Disease, 1997, 81(7):723-728. doi: 10.1094/PDIS.1997.81.7.723
[26] Imazaki I, Kadota I. Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems[J]. FEMS Microbiology Ecology, 2015, 91(9):fiv098. doi: 10.1093/femsec/fiv098
[27] Fuchs J G, Moënne-Loccoz Y, Défago G. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato[J]. Plant Disease, 1997, 81(5):492-496. doi: 10.1094/PDIS.1997.81.5.492
[28] Edel V, Steinberg C, Gautheron N, et al. Populations of nonpathogenic Fusarium oxysporum associated with roots of four plant species compared to soilborne populations[J]. Phytopathology, 1997, 87(7):693-697. doi: 10.1094/PHYTO.1997.87.7.693
[29] Saldajeno M G B, Hyakumachi M. The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings[J]. Annals of Applied Biology, 2011, 159(1):28-40. doi: 10.1111/aab.2011.159.issue-1
[30] Bacon C W, Hinton D M. Symptomless endophytic colonization of maize by Fusarium moniliforme[J]. Canadian Journal of Botany, 1996, 74(8):1195-1202. doi: 10.1139/b96-144
[31] Freeman S, Zveibil A, Vintal H, et al. Isolation of nonpathogenic mutants of Fusarium oxysporum f. sp. melonis for biological control of Fusarium wilt in cucurbits[J]. Phytopathology, 2002, 92(2):164-168. doi: 10.1094/PHYTO.2002.92.2.164
[32] Paparu P, Dubois T, Gold C S, et al. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants[J]. Microbial Ecology, 2008, 55(3):561-568. doi: 10.1007/s00248-007-9301-7
[33] Ma L J, Geiser D M, Proctor R H, et al. Fusarium pathogenomics[J]. Annual Review of Microbiology, 2013, 67:399-416. doi: 10.1146/annurev-micro-092412-155650