[1] 刘会香, 贾秀贞, 吕全, 等.中国杨树溃疡病的发生与防治[J].世界林业研究, 2005, 18(4): 60-63. doi: 10.3969/j.issn.1001-4241.2005.04.012
[2] 黄逢龙, 焦一杰, 丁辉, 等.不同林分密度下场树树冠结构与溃疡病的关系[J].南京林业大学学报, 2010, 34(4): 79-82. doi: 10.3969/j.issn.1000-2006.2010.04.018
[3] 王孟昌, 梁军, 樊军锋, 等.主要杨树生产品种对溃疡病田间抗性的调查[J].西北林学院学报, 2008, 23(5): 122-123.
[4] Yuan L, Wang L, Han Z, et al. Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants[J]. J Exp Bot, 2012, 63(7): 2513-2524. doi: 10.1093/jxb/err425
[5] Ye S, Jiang Y, Duan Y, et al. Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants[J]. Tree Physiol, 2014, 34(10):1118-1129. doi: 10.1093/treephys/tpu079
[6] Wang L, Ran L, Hou Y, et al. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar[J]. New Phytol, 2017, 215(1):351-367. doi: 10.1111/nph.14569
[7] Jiang Y, Guo L, Ma X, et al. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus[J]. Tree Physiol, 2017, 37(5):665-675. doi: 10.1093/treephys/tpx008
[8] 王建革, 苏晓华, 纪丽丽, 等.基因枪转多基因库安托杨的获得[J].科学通报, 2006, 51(23): 2755-2760. doi: 10.3321/j.issn:0023-074X.2006.23.009
[9] 张晓芬.转基因抗虫杨的抗虫性测定及对节肢动物群落影响研究[D].北京: 北京林业大学, 2009.
[10] 李丹, 李环, 丁昌俊, 等.涝渍胁迫对转多基因库安托杨生长及生理性状的影响[J].林业科学研究, 2010, 23(1): 44-52.
[11] 夏永刚, 李密, 李永进, 等.转多基因库安托杨对昆虫群落的影响[J].中国农学通报, 2013, 29(19): 84-88. doi: 10.11924/j.issn.1000-6850.2013-0407
[12] 李丹, 黄绢, 张伟溪, 等.盐胁迫条件下转多基因库安托杨根尖离子流变化[J].林业科学, 2015, 51(9): 35-41.
[13] 张秀琳.番茄基因JERFs的功能分析[D].北京: 中国农业大学, 2003.
[14] Lorenzo O, Piqueras R, Sánchez-Serrano J J, et al. ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense[J]. The Plant Cell, 2003, 15: 165-178. doi: 10.1105/tpc.007468
[15] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[16] Dangl J L, Jones J D. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411(6839):826-833. doi: 10.1038/35081161
[17] Gurr S J, Rushton P J. Engineering plants with increased disease resistance: how are we going to express it?[J]. Trends in Biotechnology, 2005, 23(6):283-290. doi: 10.1016/j.tibtech.2005.04.009
[18] Fonseca J P, Menossi M, Thibaudnissen F, et al. Functional analysis of a TGA factor-binding site located in the promoter region controlling salicylic acid-induced NIMIN-1 expression in Arabidopsis[J]. Genetics & Molecular Research Gmr, 2010, 9(1):167-175.
[19] Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors[J]. Current Opinion in Plant Biology, 2004, 7(4):465-471. doi: 10.1016/j.pbi.2004.04.007
[20] Xu Z S S, Chen M C, Li L C C, et al. Functions of the ERF transcription factor family in plants[J]. Botany-botanique, 2008, 86(9):969-977. doi: 10.1139/B08-041
[21] Nakashima K, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses[J]. Plant Physiology, 2009, 149(1):88-95. doi: 10.1104/pp.108.129791
[22] Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi[J]. Plant Journal, 2002, 29(1):23-32. doi: 10.1046/j.1365-313x.2002.01191.x
[23] Berrocal-Lobo M, Molina A. Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum[J]. Molecular Plant-Microbe Interactions, 2004, 17(7):763-770. doi: 10.1094/MPMI.2004.17.7.763
[24] Zuo K J, Qin J, Zhao J Y, et al. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes[J]. Gene, 2007, 391(1-2):80-90. doi: 10.1016/j.gene.2006.12.019
[25] Cao Y, Song F, Goodman R M, et al. Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress.[J]. Journal of Plant Physiology, 2006, 163(11):1167-1178. doi: 10.1016/j.jplph.2005.11.004
[26] Cao Y, Wu Y, Zheng Z, et al. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco[J]. Physiological and Molecular Plant Pathology, 2005, 67(3-5): 202-211. doi: 10.1016/j.pmpp.2006.01.004
[27] Chen L, Zhang Z Y, Liang H X, et al. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat[J]. Journal of Experimental Botany, 2008, 59(15):4195-4204. doi: 10.1093/jxb/ern259
[28] 杨国顺.转JERFs基因提高辣椒抗病性的研究[D].长沙: 湖南农业大学, 2003.
[29] 李文正, 张海文, 王俊英, 等. ERF转录因子及其在烟草抗逆性改良中的应用[J].生物技术通报, 2006(4): 30-34. doi: 10.3969/j.issn.1002-5464.2006.04.007
[30] 李义良.转基因杨树的分子检测及抗逆性评价[D].北京: 北京林业大学, 2008.
[31] Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, et al. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress[J]. Journal of experimental botany, 2013, 64(2): 445-458. doi: 10.1093/jxb/ers354
[32] Anderson J P, Lichtenzveig J, Gleason C, et al. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia[J]. Plant Physiology, 2010, 154(2):861-873. doi: 10.1104/pp.110.163949