[1] Børja I, Světlík J, Nadezhdin V, et al. Sap flux-a real time assessment of health status in Norway spruce[J]. Scandinavian Journal of Forest Research, 2016, 31(4):450-457.
[2] Nadezhdina N, Cermák J, Downey A, et al. Sap flow index as an indicator of water storage use[J]. Journal of Hydrology and Hydromechanics, 2015, 63(2):124-133. doi: 10.1515/johh-2015-0013
[3] Roberts J. The role of plant physiology in hydrology: looking backwards and forwards. (Special issue: A view from the watershed revisited.)[J]. Hydrology and Earth System Sciences, 2007, 11(1): 256-269.
[4] Aroca R. Plant Responses to Drought Stress: From Morphological to Molecular Features[M]. Springer, 2012.
[5] Ryan M G. Tree responses to drought[J]. Tree Physiology, 2011, 31(3):237-239. doi: 10.1093/treephys/tpr022
[6] Lu P. A Direct method for estimating the average sap flux density using a modified Granier measuring system[J]. Functional Plant Biology, 2001, 24(28):701-705.
[7] Lubinda A K, Murray-Hudson M, Green S. Sap flow variation in selected riparian woodland species in the Okavango Delta, Botswana[J]. African Journal of Ecology, 2017, 55(4):654-663. doi: 10.1111/aje.2017.55.issue-4
[8] Nadezhdina N. Revisiting the Heat Field Deformation (HFD) method for measuring sap flow[J]. Forest-Biogeosciences and Forestry, 2018, 11(1):118-130. doi: 10.3832/ifor2381-011
[9] Zhao X H, Zhao P, Zhang Z Z, et al. Sap flow-based transpiration in Phyllostachys pubescens:applicability of the TDP methodology, age effect and rhizome role[J]. Trees-Structure and Function, 2017, 31(2):765-779. doi: 10.1007/s00468-016-1407-4
[10] Granier A. A new method of sap flow measurement in tree stems[J]. Annales Des Sciences Forestieres, 1985, 42(2):193-200. doi: 10.1051/forest:19850204
[11] Tsuruta K, Kume T, Komatsu H, et al. Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates[J]. Journal of Forest Research, 2010, 15(6):398-403. doi: 10.1007/s10310-010-0202-0
[12] Kume T, Otsuki K, Du S, et al. Spatial variation in sap flow velocity in semiarid region trees:its impact on stand-scale transpiration estimates[J]. Hydrological Processes, 2012, 26(8):1161-1168. doi: 10.1002/hyp.8205
[13] 白志强, 刘华, 佘春燕, 等.西伯利亚落叶松树干液流的动态变化[J].河北农业大学学报, 2016, 39(3):49-54.
[14] 马建鹏, 汪有科, 陈滇豫, 等.不同时间尺度上枣树树干液流的变异特性[J].干旱地区农业研究, 2016, 34(3):95-101.
[15] 徐丹丹, 尹立河, 侯光才, 等.毛乌素沙地旱柳和小叶杨树干液流密度及其与气象因子的关系[J].干旱区研究, 2017, 34(2):375-382.
[16] 李吉跃, 翟洪波.木本植物水力结构与抗旱性[J].应用生态学报, 2000, 11(2):301-305. doi: 10.3321/j.issn:1001-9332.2000.02.037
[17] Čermák J, Nadezhdina N, Fernández E, et al. Application of a sap flow technique for characterizing the whole tree architecture, crowns and roots[J]. Acta Horticulturae, 2009, 846(846):219-228.
[18] Komatsu H, Shinohara Y, Kume T, et al. Does measuring azimuthal variations in sap flux lead to more reliable stand transpiration estimates?[J]. Hydrological Processes, 2016, 30(13):2129-2137. doi: 10.1002/hyp.v30.13
[19] 毕华兴, 云雷, 朱清科.晋西黄土区农林复合系统种间关系研究[M]:北京:科学出版社, 2011. 189.
[20] 张静, 王力, 韩雪, 等.不同时间尺度下黄土塬区19年生苹果树干液流速率与环境因子的关系[J].中国农业科学, 2016, 49(13):2583-2592. doi: 10.3864/j.issn.0578-1752.2016.13.014
[21] 蔡智才, 毕华兴, 许华森, 等.晋西黄土区苹果花生间作系统光合有效辐射及其对花生生长的影响[J].西北农林科技大学学报:自然科学版, 2017, 45(4):51-58.
[22] Dang H, Zha T, Zhang J, et al. Radial profile of sap flow velocity in mature Xinjiang poplar (Populus alba L. var. pyramidalis) in Northwest China[J]. Journal of Arid Land, 2014, 6(5): 612-627.
[23] 党宏忠, 张劲松, 赵雨森.应用热扩散技术对柠条锦鸡儿主根液流速率的研究[J].林业科学, 2010, 46(3):29-36.
[24] Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiology, 1987, 3(4):309-320. doi: 10.1093/treephys/3.4.309
[25] Lu P, Urban L, Zhao P. Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees:theory and practice[J]. Acta Botanica Sinica, 2004, 46(6):631-646.
[26] Kume T, Komatsu H, Kuraji K, et al. Less than 20-min time lags between transpiration and stem sap flow in emergent trees in a bornean tropical rainforest[J]. Agricultural and Forest Meteorology, 2008, 148(6-7):1181-1189. doi: 10.1016/j.agrformet.2008.02.010
[27] 赵平, 饶兴权, 马玲, 等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异[J].生态学报, 2006, 26(12):4050-4058. doi: 10.3321/j.issn:1000-0933.2006.12.018
[28] 党宏忠, 杨文斌, 李卫, 等.新疆杨树干液流的径向变化及时滞特征[J].生态学报, 2015, 35(15):5110-5120.
[29] 党宏忠, 杨文斌, 李卫, 等.民勤绿洲二白杨树干液流的径向变化及时滞特征[J].应用生态学报, 2014, 25(9):2501-2510.
[30] 刘家霖, 满秀玲, 胡悦.兴安落叶松天然林不同分化等级林木树干液流对综合环境因子的响应[J].林业科学研究, 2016, 29(5):726-734. doi: 10.3969/j.issn.1001-1498.2016.05.015
[31] 赵春彦, 司建华, 冯起, 等.荒漠河岸胡杨(Populus euphratica)树干液流的时滞效应[J].中国沙漠, 2014, 34(5):1254-1260.
[32] 徐世琴, 吉喜斌, 金博文.典型荒漠植物沙拐枣茎干液流密度动态及其对环境因子的响应[J].应用生态学报, 2016, 27(2):345-353.
[33] 池波, 蔡体久, 满秀玲, 等.大兴安岭北部兴安落叶松树干液流规律及影响因子分析[J].北京林业大学学报, 2013, 35(4):21-26.
[34] 孙慧珍, 孙龙, 王传宽, 等.东北东部山区主要树种树干液流研究[J].林业科学, 2005, 41(3):36-42. doi: 10.3321/j.issn:1001-7488.2005.03.006
[35] Morgan H D, Barton C. Forest-scale sap flux responses to rainfall in a dryland eucalyptus plantation[J]. Plant and Soil, 2008, 305(1-2):131-144. doi: 10.1007/s11104-008-9558-8
[36] Saugier B, Granier A, Pontailler J Y, et al. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods[J]. Tree Physiology, 1997, 17(8-9):511-519. doi: 10.1093/treephys/17.8-9.511