[1] McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?[J] New Phytologist, 2008, 178(4):719-739. doi: 10.1111/j.1469-8137.2008.02436.x
[2] Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4):660-684. doi: 10.1016/j.foreco.2009.09.001
[3] 段洪浪, 吴建平, 刘文飞, 等.干旱胁迫下树木的碳水过程以及干旱死亡机理[J].林业科学, 2015, 51(11):113-120.
[4] 冀琳珂.雷竹水分利用和出笋期个体有机碳分布规律研究[D].北京: 中国林业科学研究院, 2017.
[5] 费世民.竹林生态研究[M].北京:中国林业出版社, 2011:200-201.
[6] 陈正法, 张茜茜.我国南方红壤区季节性干旱及对林果业的影响[J].农业环境保护, 2002, 21(3):241-244.
[7] 毛美红, 丁笑章, 傅柳方, 等.干旱对毛竹林新竹成竹影响的调查分析[J].世界竹藤通讯, 2012, 10(1):12-15. doi: 10.3969/j.issn.1672-0431.2012.01.007
[8] 王树东, 刘素红, 丁建丽, 等.叶片水分含量光谱响应变化研究[J].干旱区地理, 2006, 29(4):510-515. doi: 10.3321/j.issn:1000-6060.2006.04.009
[9] 程志庆, 张劲松, 孟平, 等.基于高光谱信息的107杨叶片等效水厚度估算模型的研究[J].林业科学研究, 2016, 29(6) :826-833.
[10] Hunt E R, Rock B N. Detection of changes in leaf water content using near-and middle-infrared reflectances[J]. Remote Sensing of Environment, 1989, 30(1):43-54.
[11] Zarco P J, Rueda C A, Ustin S L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods[J]. Remote Sensing of Environment, 2003, 85(1):109-124.
[12] Seelig H D, Hoehn A, Stodieck L S, et al. The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared[J]. International Journal of Remote Sensing, 2008, 29(13):3701-3713. doi: 10.1080/01431160701772500
[13] Gao B C, Goetzt A F H. Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data[J].Remote Sensing of Environment, 1995, 52(3):155-162.
[14] Peňuelas J, Filella I, Biel C, et al. The reflectance at the 950-970 nm region as an indicator of plant water status[J]. International Journal of Remote Sensing, 1993, 14(10):1887-1905. doi: 10.1080/01431169308954010
[15] Wang Q, Li P. Hyperspectral indices for estimating leaf biochemical properties in temperate deciduous forests:Comparison of simulated and measured reflectance data sets[J]. Ecological Indicators.2012, 14(1):56-65. doi: 10.1016/j.ecolind.2011.08.021
[16] 田永超, 曹卫星, 姜东, 等.不同水氮条件下水稻冠层反射光谱与植株含水率的定量关系[J].植物生态学报, 2005, 29(2):318-323. doi: 10.3321/j.issn:1005-264X.2005.02.019
[17] 刘畅, 孙鹏森, 刘世荣.水分敏感的反射光谱指数比较研究——以锐齿槲栎为例[J].植物生态学报, 2017, 41(8):850-861.
[18] 易同培, 史军义, 马丽莎, 等.中国竹类图志[M].北京:科学出版社, 2008:11-12.
[19] Hardisky M, Klemas V, Smart R M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies[J]. Photogrammetric Engineering and Remote Sensing, 1983, 48(1):77-84.
[20] Gao B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
[21] Wang L, Qu J J. NMDI:A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing[J]. Geophysical Research Letters, 2007, 34 (20):117-131.
[22] Ceccato P, Flasse S, Tarantola S, et al. Detecting vegetation leaf water content using reflectance in the optical domain[J]. Remote Sensing of Environment, 2001, 77(1):22-33.
[23] 胡俊靖, 陈双林, 郭子武, 等.美丽箬竹水分生理整合的分株比例效应-基于叶片抗氧化系统与光合色素[J].植物生态学报, 2015, 39(7):762-772.
[24] 胡俊靖, 陈卫军, 陈双林, 等.基于抗氧化系统的美丽箬竹水分生理整合作用分析[J].生态学杂志, 2015, 34(4):962-966.
[25] 孙中宇, 陈燕乔, 杨龙, 等.轻小型无人机低空遥感及其在生态学中的应用进展[J].应用生态学报, 2017, 28(2):528-536.
[26] Carter G A. Primary and secondary effects of water content on the spectral reflectance of leaves[J]. American Journal of Botany, 1991, 78(7):916-924. doi: 10.1002/ajb2.1991.78.issue-7
[27] Tucker C J.Remote sensing of leaf water content in the near infrared[J]. Remote Sensing of Environment, 1980, 10(1):23-32.