[1] Pokhrel Y, Felfelani F, Satoh Y, et al. Global terrestrial water storage and drought severity under climate change[J]. Nature Climate Change, 2021, 11: 226-233. doi: 10.1038/s41558-020-00972-w
[2] Brooker R, Brown L K, George T S, et al. Active and adaptive plasticity in a changing climate[J]. Trends in Plant Science, 2022, 27(7): 717-728. doi: 10.1016/j.tplants.2022.02.004
[3] Li W J, Liu S S, Li J H, et al. Plant traits response to grazing exclusion by fencing assessed via multiple classification approach: a case from a subalpine meadow[J]. Polish Journal of Ecology, 2019, 67(1): 33-52. doi: 10.3161/15052249PJE2019.67.1.003
[4] Bigot S, Buges J, Gilly L, et al. Pivotal roles of environmental sensing and signaling mechanisms in plant responses to climate change[J]. Global Change Biology, 2018, 24(12): 5573-5589. doi: 10.1111/gcb.14433
[5] Stamp M A, Hadfield J D. The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis[J]. Ecology Letters, 2020, 23(10): 1432-1441. doi: 10.1111/ele.13565
[6] Raul M, Rafael Z, Gloria B, et al. Drivers of population differentiation in phenotypic plasticity in a temperate conifer: A 27-year study[J]. Evolutionary Applications, 2022, 15(11): 1945-1962. doi: 10.1111/eva.13492
[7] Zhang Z P, Fu X D, Sheng Q, et al. Effect of rainfall pattern and crack on the stability of a red bed slope: a case study in Yunnan Province[J]. Advances in Civil Engineering, 2021, 2021(21): 1-21.
[8] 钟悦鸣, 王文娟, 王健铭, 等. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10):20-29.
[9] Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5): 882-892. doi: 10.1111/j.0030-1299.2007.15559.x
[10] Haifa D, Francesco D B, Maria-teresa S, et al. Functional trait changes, productivity shifts and vegetation stability in Mountain Grasslands during a short-term warming[J]. Plos One, 2015, 10(10): e0141899. doi: 10.1371/journal.pone.0141899
[11] Reich P B, Cornelissen H. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto[J]. Journal of Ecology, 2014, 102(2): 275-301. doi: 10.1111/1365-2745.12211
[12] Blonder B, Violle C, Enquist B J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides[J]. Journal of Ecology, 2013, 101(4): 981-989. doi: 10.1111/1365-2745.12102
[13] Li S J, Su P X, Zhang H N, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plants[J]. Plant Physiology Journal, 2013, 49(2): 153-160.
[14] Oktavta D, Jin G. Variations in leaf morphological and chemical traits in response to life stages, plant functional types, and habitat types in an old-growth temperate forest[J]. Basic and Applied Ecology, 2020, 49: 22-33. doi: 10.1016/j.baae.2020.09.010
[15] Jones C S, Martinez-cabrera H I, Nicotra A B, et al. Phylogenetic influences on leaf trait integration inPelargonium (Geraniaceae): convergence, divergence, and historical adaptation to a rapidly changing climate[J]. American Journal of Botany, 2013, 100(7): 1306-1321. doi: 10.3732/ajb.1200526
[16] Wang M, Wan P, Guo J, et al. Relationships among leaf, stem and root traits of the dominant shrubs from four vegetation zones in Shanxi Province, China[J]. Israel Journal of Ecology & Evolution, 2017, 63(2): 25-32.
[17] Song L L, Fan J W, Harris W, et al. Adaptive characteristics of grassland community structure and leaf traits along an altitudinal gradient on a subtropical mountain in Chongqing, China[J]. Plant Ecology, 2012, 213(1): 89-101. doi: 10.1007/s11258-011-0009-x
[18] Pérez-harguindeguy N, Díaz S, Garnier E, et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2016, 64(8): 715-716. doi: 10.1071/BT12225_CO
[19] Kramp R E, Liancourt P, Herberich M, et al. Functional traits and their plasticity shift from tolerant to avoidant under extreme drought[J]. Journal of Ecology, 2022, 103(12): e3826.
[20] Cornelissen J, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335-380. doi: 10.1071/BT02124
[21] 张立恒, 王学全, 贾志清, 等. 高寒沙地不同林龄中间锦鸡儿人工林根系分布特征[J]. 干旱区资源与环境, 2018, 32(11):163-168.
[22] 宋乃平, 杨明秀, 王 磊, 等. 荒漠草原区人工柠条林土壤水分周年动态变化[J]. 生态学杂志, 2014, 33(10):2618-2624.
[23] Li Q, Yang D, Jia Z, et al. , Changes in soil organic carbon and total nitrogen stocks along a chronosequence of Caragana intermedia plantations in alpine sandy land[J]. Ecological Engineering, 2019, 133: 53-59. doi: 10.1016/j.ecoleng.2019.03.003
[24] 刘学东, 陈 林, 杨新国, 等. 中间锦鸡儿花水浸提液对三种作物种子萌发及幼苗生长的化感作用[J]. 北方园艺, 2016(12):65-70.
[25] 张亚杰, 杨九艳, 耿倩倩, 等. 中间锦鸡儿叶表皮微形态的经度格局及其影响因素[J]. 西北植物学报, 2018, 38(10):1858-1868.
[26] 郑如玉, 刘 坤, 杨 杞, 等. 中间锦鸡儿干旱转录组SSR标记的开发及遗传多样性研究[J]. 分子植物育种, 2017, 15(6):2236-2243.
[27] 李媛媛, 徐婷婷, 艾 喆, 等. 锦鸡儿属植物功能性状与根际土壤细菌群落结构的关系[J]. 草业学报, 2022, 31(7):38-49.
[28] 唐学娟. 晋西北风沙区人工柠条林(Caragana korshinskii)功能性状对生态系统功能的影响[D]. 太原: 山西师范大学, 2021.
[29] 霍佳璇, 任 梁, 潘莹萍, 等. 柴达木盆地荒漠植物功能性状及其对环境因子的响应[J]. 生态学报, 2022, 42(11):4494-4503.
[30] 周 欣, 左小安, 赵学勇, 等. 科尔沁沙地植物功能性状的尺度变异及关联[J]. 中国沙漠, 2016, 36(1):20-26.
[31] Garnier E, Laurent G, Bellmann A, et al. Consistency of species ranking based on functional leaf traits[J]. New Phytologist, 2001, 152(1): 69-83. doi: 10.1046/j.0028-646x.2001.00239.x
[32] Casper B B, Forseth I N, Kempenich H, et al. Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava[J]. Functional Ecology, 2001, 15(6): 740-747. doi: 10.1046/j.0269-8463.2001.00583.x
[33] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought - from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3): 239-264. doi: 10.1071/FP02076
[34] Navas M L, Roumet C, Bellmann A, et al. Suites of plant traits in species from different stages of a Mediterranean secondary succession[J]. Plant Biology, 2010, 12(1): 183-196. doi: 10.1111/j.1438-8677.2009.00208.x
[35] Torre F D, Ferreira B G, Lima J E, et al. Leaf morphophysiological changes induced by long-term drought in Jatropha curcas plants explain the resilience to extreme drought[J]. Journal of Arid Environments, 2021, 185(3): 104381.
[36] 刘玉冰, 李新荣, 李蒙蒙, 等. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11):1189-1207. doi: 10.17521/cjpe.2016.0129
[37] Tataranni G, Santarcangelo M, Sofo A, et al. Correlations between morpho-anatomical changes and radial hydraulic conductivity in roots of olive trees under water deficit and rewatering[J]. Tree Physiology, 2015, 35(12): 1356-1365. doi: 10.1093/treephys/tpv074
[38] Drake J E, Power S A, Duurssma R A, et al. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations[J]. Agricultural & Forest Meteorology, 2017, 247: 454-466.
[39] 潘莹萍, 陈亚鹏, 王怀军, 等. 胡杨(Populus euphratica)叶片结构与功能关系[J]. 中国沙漠, 2018, 38(4):765-771.
[40] Zhang S B, Guan Z J, Mei S, et al. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae[J]. Plos One, 2012, 7(6): e40080. doi: 10.1371/journal.pone.0040080
[41] 薛智德, 韩蕊莲, 侯庆春, 等. 延安地区5种灌木叶旱性结构的解剖研究[J]. 西北植物学报, 2004, 24(7):1200-1206.
[42] 黄振英, 吴 鸿, 胡正海. 新疆10种沙生植物旱生结构的解剖学研究[J]. 西北植物学报, 1995, 15(6):56-61.
[43] Ivanova L A, Zolotareva N V, Ronzhina D A, et al. Leaf functional traits of abundant species predict productivity in three temperate herbaceous communities along an environmental gradient[J]. Flora, 2018, 239: 11-19. doi: 10.1016/j.flora.2017.11.005
[44] Tor-ngern P, Chart-Asa C, Charthorn W, et al. Variation of leaf-level gas exchange rates and leaf functional traits of dominant trees across three successional stages in a Southeast Asian tropical forest[J]. Forest Ecology and Management, 2021, 489(2): 119101.
[45] 王 鑫, 杨 磊, 赵 倩, 等. 黄土高原典型小流域草地群落功能性状对土壤水分的响应[J]. 生态学报, 2019, 40(8):2691-2697.
[46] 魏圆慧, 王志鑫, 梁文召, 等. 胡杨枝叶功能性状对地下水位梯度的响应与适应[J]. 西北植物学报, 2020, 40(6):1043-1051.