[1] Working Group I Contribution to the IPCC fifth assessment report(AR5). Climate Change 2013: The physical science basis[R/OL]. IPCC, 2013.https://www.ipcc.ch/report/ar5/wg1/.
[2] 宗学政, 田晓瑞, 尹云鹤. 未来气候情景下中亚地区的森林草原火险评估[J]. 林业科学研究, 2021, 34(3):13-22.
[3] CHEN C, PARK T, WANG X, et al. China and India lead in greening of the world through land-use management[J]. Nature sustainability, 2019, 2(2): 122-129. doi: 10.1038/s41893-019-0220-7
[4] 莫其锋, 孔杰君, 王艺颖, 等. 马占相思人工林不同林下灌木叶片功能性状的差异[J]. 林业科学研究, 2021, 34(3):135-144.
[5] GESSLER A, CAILLERET M, JOSEPH J, et al. Drought induced tree mortality–a tree-ring isotope based conceptual model to assess mechanisms and predispositions[J]. New Phytologist, 2018, 219(2): 485-490. doi: 10.1111/nph.15154
[6] 胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3):1498-1507.
[7] 陈 平, 张劲松, 孟 平, 等. 稳定碳同位素测定水分利用效率——以决明子为例[J]. 生态学报, 2014, 34(19):5453-5459.
[8] GEA-IZQUIERDO G, GUIBAL F, JOFFRE R, et al. Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series[J]. Biogeosciences, 2015, 12(12): 3695-3712. doi: 10.5194/bg-12-3695-2015
[9] MEDLYN B E, DE KAUWE M G, LIN Y S, et al. How do leaf and ecosystem measures of water‐use efficiency compare?[J]. New Phytologist, 2017, 216(3): 758-770. doi: 10.1111/nph.14626
[10] YU X, YANG X, WU Y, et al. Sonneratiaapetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems[J]. Soil Biology and Biochemistry, 2020, 144: 107775. doi: 10.1016/j.soilbio.2020.107775
[11] 康满春, 朱丽平, 许 行, 等. 基于Biome-BGC模型的北方杨树人工林碳水通量对气候变化的响应研究[J]. 生态学报, 2019, 39(7):2378-2390.
[12] 张少伟, 张弓乔, 惠刚盈. 内蒙古大兴安岭森林净初级生产力时空格局分析[J]. 林业科学研究, 2019, 32(5):74-82.
[13] YOU Y, WANG S, MA Y, et al. Improved modeling of gross primary productivity of Alpine Grasslands on the Tibetan Plateau using the biome-BGC model[J]. Remote Sensing, 2019, 11(11): 1287. doi: 10.3390/rs11111287
[14] 甘红豪, 赵 帅, 杨泽坤, 等. 刺槐幼苗对NaCl胁迫的生理生化响应[J]. 林业科学研究, 2020, 33(4):75-82.
[15] 阮亚男, 萧英男, 杨立新, 等. 大连市黑松树木水分利用效率的环境响应[J]. 应用生态学报, 2017, 28(9):2849-2855.
[16] 宋变兰. 黄土丘陵区两典型森林生态系统生物量、碳氮库和碳固存特征研究[D]. 咸阳: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2015.
[17] 赵 勇. 太行山低山丘陵区退化生态系统植被恢复过程生态特征分析与评价[D]. 郑州: 河南农业大学, 2007.
[18] 周 佳, 孟 平, 张劲松, 等. 河南民权与陕西白水刺槐径向生长与水分利用效率对气候响应的差异[J]. 林业科学研究, 2021, 34(6):1-8.
[19] 路伟伟, 余新晓, 贾国栋, 等. 基于树轮δ13C值的北京山区油松水分利用效率[J]. 生态学报, 2017, 37(6):2093-2100.
[20] 孙守家, 李春友, 何春霞, 等. 基于树轮稳定碳同位素的张北杨树防护林退化原因解析[J]. 应用生态学报, 2017, 28(7):2119-2127. doi: 10.13287/j.1001-9332.201707.024
[21] MCCARROLL D, LOADER N J. Stable isotopes in tree rings[J]. Quaternary Science Reviews, 2004, 23(7-8): 771-801. doi: 10.1016/j.quascirev.2003.06.017
[22] FARQUHAR G D, O'LEARY M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982, 9(2): 121-137. doi: 10.1071/PP9820121
[23] GAGEN M, FINSINGER W, WAGNER‐CREMER F, et al. Evidence of changing intrinsic water‐use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring δ13C ratios[J]. Global Change Biology, 2011, 17(2): 1064-1072. doi: 10.1111/j.1365-2486.2010.02273.x
[24] SIGDEL S R, WANG Y, CAMARERO J J, et al. Moisture‐mediated responsiveness of treeline shifts to global warming in the Himalayas[J]. Global Change Biology, 2018, 24(11): 5549-5559. doi: 10.1111/gcb.14428
[25] YI K, MAXWELL J T, WENZEL M K, et al. Linking variation in intrinsic water‐use efficiency to isohydricity: a comparison at multiple spatiotemporal scales[J]. New Phytologist, 2019, 221(1): 195-208. doi: 10.1111/nph.15384
[26] 张 瑜. 黄土高原降水梯度带典型植物适宜盖度空间分布特征[D]. 杨凌: 西北农林科技大学, 2014.
[27] 张 艺, 余新晓, 范敏锐, 等. 北京山区刺槐林净初级生产力对气候变化的响应[J]. 水土保持研究, 2012, 19(3):151-155.
[28] 芦 琛. 典型水土保持林地植被水分利用效率与承载力模型模拟研究[D]. 杨凌: 西北农林科技大学, 2021.
[29] PANTHI S, FAN Z X, VAN DER SLEEN P, et al. Long‐term physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate[J]. Global change biology, 2020, 26(3): 1778-1794. doi: 10.1111/gcb.14910
[30] LIN Y X, GRACE J, ZHAO W, et al, Water-use efficiency and its relationship with environmental and biological factors in a rubber plantation [J]. Journal of hydrology, 2018, 563: 273-282.
[31] ZHANG C, JU W, CHEN J, et al. Sustained biomass carbon sequestration by China’s forests from 2010 to 2050[J]. Forests, 2018, 9(11): 689. doi: 10.3390/f9110689
[32] YAN J, ZHANG Y, YU G, et al. Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China[J]. Agricultural and Forest Meteorology, 2013, 182-183: 257-265. doi: 10.1016/j.agrformet.2013.03.002
[33] DAUX V, ÉDOUARD J L, MASSON-DELMOTTE V, et al. Can climate variations be inferred from tree-ring parameters and stable isotopes from Larix decidua? Juvenile effects, budmoth outbreaks, and divergence issue[J]. Earth and Planetary Science Letters, 2011, 309(3-4): 221-233. doi: 10.1016/j.jpgl.2011.07.003
[34] MCDOWELL N G, BEERLING D J, Breshears D D, et al. The interdependence of mechanisms underlying climate-driven vegetation mortality[J]. Trends in ecology & evolution, 2011, 26(10): 523-532.
[35] CHERUBINI P, BATTIPAGLIA G, INNES J L. Tree vitality and forest health: can tree-ring stable isotopes be used as indicators?[J]. Current Forestry Reports, 2021, 7(2): 69-80. doi: 10.1007/s40725-021-00137-8
[36] SABELLA E, MORETTI S, GÄRTNER H, et al. Increase in ring width, vessel number and δ18O in olive trees infected with Xylellafastidiosa[J]. Tree physiology, 2020, 40(11): 1583-1594. doi: 10.1093/treephys/tpaa095
[37] HATFIELD J L, DOLD C. Water-use efficiency: advances and challenges in a changing climate[J]. Frontiers in plant science, 2019, 10: 103. doi: 10.3389/fpls.2019.00103
[38] HUANG M, PIAO S, SUN Y, et al. Change in terrestrial ecosystem water‐use efficiency over the last three decades[J]. Global Change Biology, 2015, 21(6): 2366-2378. doi: 10.1111/gcb.12873
[39] LU X, ZHUANG Q. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data[J]. Remote Sensing of Environment, 2010, 114(9): 1924-1939. doi: 10.1016/j.rse.2010.04.001
[40] YVON-DUROCHER G, ALLEN A P, BASTVIKEN D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[J]. Nature, 2014, 507(7493): 488-491. doi: 10.1038/nature13164