[1] 刘 菲. 森林资源配置对木材供给的影响研究[D]. 北京: 北京林业大学, 2020.
[2] 苏晓华, 李金花, 卢宝明. 林木遗传改良与我国21世纪林业可持续发展[J]. 林业科学研究, 1999, 12(6):650-655. doi: 10.3321/j.issn:1001-1498.1999.06.015
[3] OUYANG L J, HUANG Z C, ZHAO L Y, et al. Efficient regeneration of Eucalyptus urophylla × Eucalyptus grandis from stem segment[J]. Brazilian Archives of Biology and Technology, 2012, 55(3): 329-334. doi: 10.1590/S1516-89132012000300001
[4] LU H F, XU J M, Li G Y, et al. Site classification of Eucalyptus urophylla × Eucalyptus grandis plantations in China[J]. Forests, 2020, 11(8): 871. doi: 10.3390/f11080871
[5] 李焕勇. 两种耐盐植物嫩枝扦插技术及生根生理研究[D]. 北京: 中国林业科学研究院, 2014.
[6] 黄烈健, 王 鸿. 林木植物组织培养及存在问题的研究进展[J]. 林业科学研究, 2016, 29(3):464-471. doi: 10.3969/j.issn.1001-1498.2016.03.024
[7] 雷巾茗. 樱花组培快繁与扦插繁殖研究[D]. 北京: 北京林业大学, 2020.
[8] 刘 娜, 代学焕, 向凤宁等. 植物体细胞脱分化分子调控机制研究进展[J]. 植物生理学报, 2020, 2(56):127-133. doi: 10.13592/j.cnki.ppj.2019.0179
[9] 卢开成. 尾巨桉DH_(32-26)组培快繁技术[J]. 安徽农业科学, 2016, 44(14):133-135. doi: 10.3969/j.issn.0517-6611.2016.14.047
[10] 杨卫星. 尾巨桉DH32-28组培快繁技术研究[J]. 现代农业科技, 2018(13):138-139. doi: 10.3969/j.issn.1007-5739.2018.13.088
[11] 梁秀莉. 尾巨桉三个无性系芽器官离体组培快繁技术研究[D]. 南宁: 广西大学, 2015.
[12] 刘 果, 陈少雄, 高丽琼, 等. 两种优良巴西杂交桉树的组织培养和快速繁殖[J]. 桉树科技, 2017, 34(4):10-16. doi: 10.3969/j.issn.1674-3172.2017.04.002
[13] 王楚彪, 李华强, 樊林华, 等. 大量元素对桉树组培生根的影响[J]. 桉树科技, 2021, 38(1):45-50.
[14] 付雪宁, 高洪治, 申耀荣, 等. 红桦组织培养体系的建立[J]. 林业科学研究, 2021, 34(3):194-200. doi: 10.13275/j.cnki.lykxyj.2021.03.023
[15] 张沛健, 高丽琼, 尚秀华. 不同激素种类、浓度及浸泡时间对金蒲桃扦插生根的影响[J]. 热带作物学报, 2020, 41(6):1084-1091. doi: 10.3969/j.issn.1000-2561.2020.06.003
[16] 王 艺, 贾忠奎, 马履一, 等. 4种植物生长调节剂对红花玉兰嫩枝扦插生根的影响[J]. 林业科学, 2019, 55(7):35-45. doi: 10.11707/j.1001-7488.20190704
[17] 邓 艺, 曾炳山, 刘 英, 等. 巨桉无性系EG5叶片高效再生体系的建立[J]. 林业科学研究, 2012, 25(3):394-399. doi: 10.3969/j.issn.1001-1498.2012.03.020
[18] ZLUHAN-MARTINEZ E, LOPEZ-RUIZ B A, GARCIA-GOMEZ M L, et al. Integrative roles of phytohormones on cell proliferation, elongation and differentiation in the Arabidopsis thaliana primary root[J]. Front Plant Sci, 2021, 12: 659155. doi: 10.3389/fpls.2021.659155
[19] LUO J, ZHOU J J, ZHANG J Z. Aux/IAA gene family in plants: molecular structure, regulation, and function[J]. International Journal of Molecular Sciences, 2018, 19(1): 259. doi: 10.3390/ijms19010259
[20] MOCKAITIS K, ESTELLE M. Auxin receptors and plant development: a new signaling paradigm[J]. Annu Rev Cell Dev Biol, 2008, 24: 55-80. doi: 10.1146/annurev.cellbio.23.090506.123214
[21] PARRY G, CALDERON-VILLALOBOS L I, PRIGGE M, et al. Complex regulation of the TIR1/AFB family of auxin receptors[J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22540-22545. doi: 10.1073/pnas.0911967106
[22] ULMASOV T, HAGEN G, GUILFOYLE T J. ARFI, a Transcription factor that binds to auxin response elements[J]. SCIENCE, 1997, 276(5320): 1865-1868. doi: 10.1126/science.276.5320.1865
[23] KROGAN N T, MARCOS D, WEINER A I, et al. The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes[J]. The New Phytologist, 2016, 212(1): 42-50. doi: 10.1111/nph.14107
[24] VIETEN A, VANNESTE S, WISNIEWSKA J, et al. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression[J]. Development, 2005, 132(20): 4521-4531. doi: 10.1242/dev.02027
[25] KRECEK P, SKUPA P, LIBUS J, et al. The PIN-FORMED (PIN) protein family of auxin transporters[J]. Genome Biology, 2009, 10(12): 249. doi: 10.1186/gb-2009-10-12-249
[26] SAUER M, KLEINE-VEHN J. PIN-FORMED and PIN-LIKES auxin transport facilitators[J]. Development, 2019, 146(15): dev168088. doi: 10.1242/dev.168088
[27] SCHALLER G E, BISHOPP A, KIEBER J J. The Yin-Yang of hormones: cytokinin and auxin interactions in plant development[J]. The Plant Cell, 2015, 27(1): 44-63. doi: 10.1105/tpc.114.133595
[28] RUZICKA K, SIMASKOVA M, DUCLERCQ J, et al. Cytokinin regulates root meristem activity via modulation of the polar auxin transport[J]. Proc Natl Acad Sci U S A, 2009, 106(11): 4284-4289. doi: 10.1073/pnas.0900060106
[29] EPSTEIN. Mineral nutrition of plants[M]. New England: Sinauer Associates Publishers, 2005.
[30] JIANG C F, GAO X H, LIAO L L, et al. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-della signaling pathway in Arabidopsis[J]. Plant Physiology, 2007, 145(4): 1460-1470. doi: 10.1104/pp.107.103788
[31] ZHANG Z L, OGAWA M, FLEET C M, et al. Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2011, 108(5): 2160-2165. doi: 10.1073/pnas.1012232108
[32] LI K L, YU R B, FAN L M, et al. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis[J]. Nat Commun, 2016, 7: 11868. doi: 10.1038/ncomms11868
[33] SUN T. The molecular mechanism and evolution of the review GA-GID1-DELLA signaling module in plants[J]. Current Biology, 2011, 9(21): 338-345.
[34] WARD J T, LAHNER B, YAKUBOVA E, et al. The effect of iron on the primary root elongation of arabidopsis during phosphate deficiency[J]. Plant Physiology, 2008, 147(3): 1181-1191. doi: 10.1104/pp.108.118562
[35] MORA-MACIAS J, OJEDA-RIVERA J O, GUTIERREZ-ALANIS D, et al. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate[J]. Proc Natl Acad Sci U S A, 2017, 114(17): E3563-E3572.
[36] HETHERINGTON F M, KAKKAR M, TOPPING J F, et al. Gibberellin signaling mediates lateral root inhibition in response to K + -deprivation[J]. Plant Physiol, 2021, 185(3): 1198-1215. doi: 10.1093/plphys/kiaa093
[37] ZHANG Y Q, ZHOU Y W, CHEN S Y, et al. Gibberellins play dual roles in response to phosphate starvation of tomato seedlings, negatively in shoots but positively in roots[J]. Journal of Plant Physiology, 2019, 234-235: 145-153. doi: 10.1016/j.jplph.2019.02.007
[38] SHINDO M, NAGASAKA S, KASHIWADA S, et al. Shoot has important roles in strigolactone production of rice roots under sulfur deficiency[J]. Plant Signaling & Behavior, 2021, 16(4): 1880738.
[39] ZHANG J, MAZUR E, BALLA J, et al. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization[J]. Nature Communications, 2020, 11(1): 3508. doi: 10.1038/s41467-020-17252-y
[40] SUN H W, LI W Q, Burritt D J, et al. Strigolactone interact with other phytohormones to modulate plant root growth and development[J]. The Crop Journal, 2022, 10(6): 1517-1527. doi: 10.1016/j.cj.2022.07.014
[41] ALTAMURA M M, PIACENTINI D, DELLA R F, et al. New paradigms in brassinosteroids, strigolactones, sphingolipids, and nitric oxide interaction in the control of lateral and adventitious root formation[J]. Plants, 2023, 12(2): 413. doi: 10.3390/plants12020413