[1] Huang W J, Liu J X, Wang Y P, et al. Increasing phosphorus limitation along three successional forests in southern China[J]. Plant and Soil, 2013, 364(1-2): 181-191. doi: 10.1007/s11104-012-1355-8
[2] 盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1):1-14.
[3] Li B, Ge T, Xiao H, et al. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils[J]. Environmental Science and Pollution Research, 2016, 23(8): 7494-7503. doi: 10.1007/s11356-015-5977-2
[4] Roldan A, Carrasco L, Caravaca F. Stability of desiccated rhizosphere soil aggregates of mycorrhizal Juniperus oxycedrus grown in a desertified soil amended with a composted organic residue[J]. Soil Biology and Biochemistry, 2006, 38(9): 2722-2730. doi: 10.1016/j.soilbio.2006.04.024
[5] 田慎重, 王 瑜, 李 娜, 等. 耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J]. 生态学报, 2013, 33(22):7116-7124.
[6] Naveed M, Herath L, Moldrup P, et al. Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field[J]. Applied Soil Ecology, 2016, 103: 44-55. doi: 10.1016/j.apsoil.2016.03.004
[7] Belay-Tedla A, Zhou X, Su B, et al. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping[J]. Soil Biology and Biochemistry, 2009, 41(1): 110-116. doi: 10.1016/j.soilbio.2008.10.003
[8] Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feed-backs[J]. Nature, 2008, 451(7176): 289-292. doi: 10.1038/nature06591
[9] 杨玉盛, 林 鹏, 郭剑芬, 等. 格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解[J]. 生态学报, 2002, 23(7):1278-1289.
[10] 蒋 静, 周运超, 杜光平. 石灰岩发育的乔木林下土壤团聚体形成的影响因素[J]. 中国水土保持, 2011, 352(7):47-50. doi: 10.3969/j.issn.1000-0941.2011.07.019
[11] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627-633. doi: 10.2136/sssaj1986.03615995005000030017x
[12] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
[13] Meng C, Niu J, Li X, et al. Quantifying soil macropore networks in different forest communities using industrial computed tomography in a mountainous area of North China[J]. Journal of Soils and Sediments, 2017, 17(9): 2357-2370. doi: 10.1007/s11368-016-1441-2
[14] Zhong Z, Han X, Xu Y, et al. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China[J]. Land Degradation and Development, 2019, 30(9): 1070-1082. doi: 10.1002/ldr.3294
[15] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31. doi: 10.1016/j.still.2004.03.008
[16] 万晓华, 黄志群, 何宗明, 等. 阔叶和杉木人工林对土壤碳氮库的影响比较[J]. 应用生态学报, 2013, 24(2):345-350.
[17] 王冬雪. 闽北山地针阔混交林培育效果研究[D]. 福州: 福建农林大学, 2010.
[18] Liu Z, Chen X, Jing Y, et al. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil[J]. Catena, 2014, 123(1): 45-51.
[19] 谢贤健, 张 继. 巨桉人工林下土壤团聚体稳定性及分形特征[J]. 水土保持学报, 2012, 26(6):175-179.
[20] 刘广深, 许中坚, 徐冬梅. 酸沉降对土壤团聚体及土壤可蚀性的影响[J]. 水土保持通报, 2001, 21(4):70-74. doi: 10.3969/j.issn.1000-288X.2001.04.019
[21] Tamura M, Suseela V, Simpson M, et al. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems[J]. Global Change Biology, 2017, 23(10): 4002-4018. doi: 10.1111/gcb.13751
[22] 黄 宇, 冯宗炜, 汪思龙, 等. 杉木、火力楠纯林及其混交林生态系统C、N贮量[J]. 生态学报, 2005, 25(12):3146-3154. doi: 10.3321/j.issn:1000-0933.2005.12.004
[23] Gelaw A M, Singh B R, Lal R. Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in Tigray, Northern Ethiopia[J]. Land Degradation and Development, 2013, 26(7): 690-700.
[24] 曾晓敏, 范跃新, 林开淼, 等. 亚热带不同植被类型土壤磷组分特征及其影响因素[J]. 应用生态学报, 2018, 29(7):2156-2162.
[25] 范 静. 林分结构对杉木人工林土壤磷功能组分与营养器官氮磷化学计量比的影响[D]. 南昌: 江西农业大学, 2015.
[26] 张昌顺. 闽北不同类型毛竹林生态功能研究[D]. 北京: 中国林业科学研究院, 2008.
[27] 于海艳, 宫汝宁, 周 娅, 等. 北京八达岭地区4种人工林土壤团聚体稳定性及有机碳特征[J]. 水土保持学报, 2015, 29(5):162-166.
[28] 白秀梅, 韩有志, 郭汉清. 关帝山不同植被恢复类型土壤抗蚀性研究[J]. 水土保持学报, 2014, 28(2):79-84.
[29] 徐芷君, 刘苑秋, 方向民, 等. 亚热带2种针叶林土壤碳氮磷储量及化学计量比对混交的响应[J]. 水土保持学报, 2019, 33(1):167-172.