[1] Cleveland C C, Townsend A R, Schimel D S, et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems[J]. Global Biogeochemical Cycles, 1999, 13(2): 623-645. doi: 10.1029/1999GB900014
[2] Galloway J N, Schlesinger W H, Levy H, et al. Nitrogen fixation: Anthropogenic enhancement-environmental response[J]. Global Biogeochemical Cycles, 1995, 9(2): 235-252. doi: 10.1029/95GB00158
[3] Peix A, Ramírez-bahena M H, Velázquez E, et al. Bacterial associations with legumes[J]. Critical Reviews in Plant Sciences, 2015(1-3): 34,17-42.
[4] Galloway J N, Dentener F J, Capone D G, et al, Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2005, 70(2): 153-226.
[5] Howard J B, Rees D C. Structural basis of biological nitrogen fixation[J]. Chemical Review, 1996, 96(7): 2965-2982.
[6] Fornara D A, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation[J]. Journal of Ecology, 2008, 96(2): 314-322. doi: 10.1111/j.1365-2745.2007.01345.x
[7] De Notaris C, Olesen J E, Sorensen P, et al. Input and mineralization of carbon and nitrogen in soil from legume-based cover crops[J]. Nutrient Cycling in Agroecosystems, 2020, 116(1): 1-18. doi: 10.1007/s10705-019-10026-z
[8] Marquard E, Weigelt A, Temperton V M, et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment[J]. Ecology, 2009, 90(12): 3290-3302.
[9] Barneze A S, Whittaker J, McNamara N P, et al. Legumes increase grassland productivity with no effect on nitrous oxide emissions[J]. Plant and Soil, 2020, 446(1-2): 163-177. doi: 10.1007/s11104-019-04338-w
[10] Oelmann Y, Buchmann N, Gleixner G, et al. Plant diversity on aboveground and belowground N pools in temperate grassland ecosystem: Development in the first 5 years after establishment[J], Global Biogeochemical Cycles, 2011, 25(2): 1-12.
[11] Ye Q H, Wang Y H, Zhang Z T, et al. Dissolved organic matter characteristics in soils of tropical legume and non-legume tree plantations[J]. Soil Biology & Biochemistry, 2020, 148: 107880.
[12] Martinelli L A, Piccolo M C, Townsend A R, et al. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests[J]. Biogeochemistry, 1999, 46(1-3): 45-65. doi: 10.1007/BF01007573
[13] Houlton B, Wang Y P, Vitousek P M, et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 2008, 454(7202): 327-330. doi: 10.1038/nature07028
[14] Klein T, Siegwolf R T, Körner C. Belowground carbon trade among tall trees in a temperate forest[J]. Science, 2016, 352(6283): 342-344. doi: 10.1126/science.aad6188
[15] Liu Y Y, Wu L H, Baddeley J A, et al. Models of biological nitrogen fixation of legumes[J]. Agronomy for Sustainable Development, 2011, 31(1): 155-172. doi: 10.1051/agro/2010008
[16] Temperton V M, Mwangi P N, Scherer-Lorenzen M, et al. Positive interactions between nitrogen-fixing legumes and four different neighboring species in a biodiversity experiment[J]. Oecologia, 2007, 151(2): 190-205. doi: 10.1007/s00442-006-0576-z
[17] Hogh-Jensen H, Schjoerring J K. Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency[J]. Plant and Soil, 1997, 197(2): 187-199. doi: 10.1023/A:1004289512040
[18] Ledgard S F. Nitrogen cycling in low input legume-based agriculture, with emphasis on legume/grass pastures[J]. Plant and Soil, 2001, 228(1): 43-59. doi: 10.1023/A:1004810620983
[19] Palmborg C, Scherer-Lorenzen M, Jumpponen A, et al. Inorganic soil nitrogen under grassland plant communities of different species composition and diversity[J]. Ecology, 2005, 110(2): 271-282.
[20] Mignoni D B S, Simes K, Braga M R. Potential allelopathic effects of the tropical legume Sesbania virgata on the alien Leucaena leucocephala related to seed carbohydrate metabolism[J]. Biological Invasions, 2018, 20(1): 165-180. doi: 10.1007/s10530-017-1524-z
[21] Lai H R, Hall J S, Batterman S A, et al. Nitrogen fixer abundance has no effect on biomass recovery during tropical secondary forest succession[J]. Journal of Ecology, 2018, 106(4): 1415-1427. doi: 10.1111/1365-2745.12979
[22] 徐德应, 曾庆波. 海南尖峰岭热带森林蒸散[J]. 林业科学研究, 1989, 2(1):34-41. doi: 10.3321/j.issn:1001-1498.1989.01.005
[23] 李意德, 许 涵, 骆土寿, 等. 中国生态系统定位观测与研究数据集: 森林生态系统卷: 海南尖峰岭站 (生物物种数据集)[M]. 北京: 中国农业出版社, 2012.
[24] 李意德. 海南尖峰岭热带山地雨林主要种群生态位特征研究[J]. 林业科学研究, 1994, 7(1):78-85. doi: 10.3321/j.issn:1001-1498.1994.01.016
[25] 时雷雷, 骆土寿, 许 涵, 等. 尖峰岭热带山地雨林土壤物理性质小尺度空间异质性研究[J]. 林业科学研究, 2012, 25(3):285-293. doi: 10.3969/j.issn.1001-1498.2012.03.004
[26] Condit R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots[M]. Berlin: Springer, 1998.
[27] Xu H, Matteo D, Li Y P, et al. Do N-fixing legumes promote neighbor diversity in the tropics?[J]. Journal of Ecology, 2019, 107(1): 229-239.
[28] Wiegand T, Gunatilleke C V S, Gunatilleke I A U N, et al. How Individual Species Structure Diversity in Tropical Forests[J]. Proceedings of the National Academy of Science of the United States of America, 2007, 104(48): 19029-19033. doi: 10.1073/pnas.0705621104
[29] 王 平, 周道玮, 张宝田. 禾-豆混播草地种间竞争与共存[J]. 生态学报, 2009, 29(5):2560-2567. doi: 10.3321/j.issn:1000-0933.2009.05.045
[30] 郑 伟, 朱进忠, 库尔班, 等. 不同混播方式下豆-禾混播草地种间竞争动态研究[J]. 草地学报, 2010, 18(4):568-575.
[31] Xu H, Detto M, Fang S Q, et al. Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests[J]. Communications Biology, 2020, 3(1): 1-8.
[32] Mi X C, Sun Z H, Song Y F, et al. Rare tree species have narrow environmental but not functional niches[J]. Functional Ecology, 2021, 35(2): 511-520. doi: 10.1111/1365-2435.13714
[33] Zhang H F, Wang L L, Liu H M, et al. Nitrogen deposition combined with elevated precipitation is conducive to maintaining the stability of the soil fungal diversity on the Stipa baicalensis steppe[J]. Soil Biology and Biochemistry, 2018, 117: 135-138. doi: 10.1016/j.soilbio.2017.11.004
[34] Dinnage R, Simonsen A K, Barrett L G, et al. Larger plants promote a greater diversity of symbiotic nitrogen-fixing soil bacteria associated with an Australian endemic legume[J]. Journal of Ecology, 2019, 107(2): 977-991. doi: 10.1111/1365-2745.13083
[35] Wei X R, Reich P B, Hobbie S E. Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO2[J]. Global Change Biology, 2019, 25(7): 2396-2409. doi: 10.1111/gcb.14636
[36] Louis B P, Maron P A, Viaud V, et al. Soil C and N models that integrate microbial diversity[J]. Environmental Chemistry Letters, 2016, 14(3): 331-344.
[37] Roscher N, Thein S, Weigelt A, et al. N2 fixation and performance of 12 legume species in a 6-year grassland biodiversity experiment[J]. Plant and Soil, 2011, 341(1-2): ;333-348. doi: 10.1007/s11104-010-0647-0