[1] 徐立明, 张振葆, 梁晓玲, 等. 植物抗旱基因工程研究进展[J]. 草业学报, 2014, 23(6):293-303. doi: 10.11686/cyxb20140635
[2] 姚俊广, 耿 娅, 刘依静, 等. S-腺苷甲硫氨酸脱羧酶基因对银腺杨84K抗旱性的影响[J]. 林业科学, 2022, 58(2):125-132. doi: 10.11707/j.1001-7488.20220213
[3] ADAMS H D, ZEPPEL M J B, ANDEREGG W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality[J]. Nature Ecology & Evolution, 2017, 1(9): 1285-1291. doi: 10.1038/s41559-017-0248-x
[4] 黄荣辉, 刘 永, 王 林, 等. 2009年秋至2010年春我国西南地区严重干旱的成因分析[J]. 大气科学, 2012, 36(3):443-457. doi: 10.3878/j.issn.1006-9895.2011.11101
[5] PENG C H, MA Z H, LEI X D, et al. A drought-induced pervasive increase in tree mortality across Canada's boreal forests[J]. Nature Climate Change, 2011, 1(9): 467-471. doi: 10.1038/nclimate1293
[6] AN Y, LIU Y, LIU Y, et al. Opportunities and barriers for biofuel and bioenergy production from poplar[J]. Global Change Biology Bioenergy, 2021, 13(6): 905-913. doi: 10.1111/gcbb.12829
[7] PANDEY, C, GUPTA M. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L. ) by combining the role of stress indicators, modulators and genotoxicity assay[J]. Journal of Hazardous Materials, 2015, 287: 384-391. doi: 10.1016/j.jhazmat.2015.01.044
[8] FORDE B G, LEA P J. Glutamate in plants: metabolism, regulation, and signalling[J]. Journal of Experimental Botany, 2007, 58(9): 2339-2358. doi: 10.1093/jxb/erm121
[9] GOTO Y, MAKI N, ICHIHASHI Y, et al. Exogenous treatment with glutamate induces immune responses in Arabidopsis[J]. Molecular Plant-Microbe Interactions, 2020, 33(3): 474-487. doi: 10.1094/MPMI-09-19-0262-R
[10] TEIXEIRA W F, SOARES L H, FAGAN E B, et al. Amino acids as stress reducers in Soybean plant growth under different water-deficit conditions[J]. Journal of Plant Growth Regulation, 2020, 39(2): 905-919. doi: 10.1007/s00344-019-10032-z
[11] FORDE B G, ROBERTS M R. Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence[J]. F1000Prime Reports, 2014, 6: 37. doi: 10.12703/P6-37
[12] QIU X M, SUN Y Y, YE X Y, et al. Signaling role of glutamate in plants[J]. Frontiers in Plant Science, 2019, 10(1): 1743. doi: 10.3389/fpls.2019.01743
[13] CHANG C, WANG B, SHI L, et al. Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L. ) by ethylene and glutamate[J]. Journal of Plant Physiology, 2010, 167(14): 1152-1156. doi: 10.1016/j.jplph.2010.03.018
[14] 俞慧娜, 刘 鹏, 徐根娣, 等. 铝胁迫下大豆根尖细胞铝的微区分布与耐铝性分析[J]. 作物学报, 2009, 35(4):695-703. doi: 10.3724/SP.J.1006.2009.00695
[15] 黄玉婷. 外源柠檬酸和谷氨酸对铝胁迫下多花黑麦草的缓解研究[D]. 扬州: 扬州大学, 2020.
[16] 施燕华, 黄玉婷, 束方智. 外源谷氨酸对铝胁迫下多花黑麦草幼苗生长的缓解作用[J]. 草地学报, 2020, 28(6):1605-1614. doi: 10.11733/j.issn.1007-0435.2020.06.014
[17] TOYOTA M, SPENCER D, SAWAI-TOYOTA S, et al. Glutamate triggers long-distance, calcium-based plant defense signaling[J]. Science, 2018, 361(6407): 1112-1115. doi: 10.1126/science.aat7744
[18] SHAO Q, GAO Q, LHAMO D, et al. Two glutamate- and pH-regulated Ca2 + channels are required for systemic wound signaling in Arabidopsis[J]. Science Signaling, 2020, 13(640): 1453-1467. doi: 10.1126/scisignal.aba1453
[19] LI Z G, YE X Y, QIU X M. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels mediated calcium signaling[J]. Protoplasma, 2019, 256(4): 1165-1169. doi: 10.1007/s00709-019-01351-9
[20] 周志宇, 陈 斌, 郑 光. 等. 基于地基激光雷达点云的植被表型特征测量[J]. 生态学杂志, 2020, 39(1):308-314. doi: 10.13292/j.1000-4890.202001.023
[21] DU J, GERTTULA S, LI Z, et al. Brassinosteroid regulation of wood formation in poplar[J]. New phytologist, 2020, 225(4): 1516-1530. doi: 10.1111/nph.15936
[22] NI J, YU Z M, DU G K, et al. Heterologous expression and functional analysis of rice glutamate receptor-like family indicates its role in glutamate triggered calcium flux in rice roots[J]. Rice, 2016, 9(1): 9. doi: 10.1186/s12284-016-0081-x
[23] NGUYEN C T, KURENDA A, STOLZ S, et al. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): 10178-10183. doi: 10.1073/pnas.1807049115
[24] ZHENG Y, LUO L, WEI J, et al. The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2018, 506(4): 895-900. doi: 10.1016/j.bbrc.2018.10.153
[25] KAN C C, CHUNG T Y, WU H Y, et al. Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots[J]. BioMed Central Genomics, 2017, 18(1): 186. doi: 10.1186/s12864-017-3588-7
[26] LIAO H S, CHUNG Y H, HSIEH M H. Glutamate: A multifunctional amino acid in plants[J]. Plant Science, 2022, 318: 111238-111243. doi: 10.1016/j.plantsci.2022.111238
[27] 武雪萍, 刘国顺, 朱 凯, 等. 外源氨基酸对烟叶氨基酸含量的影响[J]. 中国农业科学, 2004, 37(3):357-361. doi: 10.3321/j.issn:0578-1752.2004.03.008
[28] GALILI G, TANG G L, ZHU X H, et al. Lysine catabolism: a stress and development super-regulated metabolic pathway[J]. Current Opinion in Plant Biology, 2001, 4(3): 261-266. doi: 10.1016/S1369-5266(00)00170-9
[29] LA V H, LEE B R, ISLAM M T, et al. Characterization of glutamate-mediated hormonal regulatory pathway of the drought responses in relation to proline metabolism in Brassica napus L.[J]. Plants, 2020, 9(4): 512-512. doi: 10.3390/plants9040512
[30] YOSHIBA Y, KIYOSUE T, NAKASHIMA K, et al. Regulation of levels of proline as an osmolyte in plants under water stress[J]. Plant and Cell Physiology, 1997, 38(10): 1095-1102. doi: 10.1093/oxfordjournals.pcp.a029093
[31] SEYFFERTH C, TSUDA K. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming[J]. Frontiers in Plant Science, 2014, 5: 697. doi: 10.3389/fpls.2014.00697
[32] LEHMANN S, FUNCK D, SZABADOS L, et al. Proline metabolism and transport in plant development[J]. Amino Acids, 2010, 39(4): 949-962. doi: 10.1007/s00726-010-0525-3
[33] HAMMAD A R, ALI A M. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract[J]. Annals of Agricultural Sciences, 2014, 59(1): 133-145. doi: 10.1016/j.aoas.2014.06.018
[34] 朱安婷, 蒋友武, 谢国生, 等. 外源聚γ-谷氨酸对水稻幼苗耐旱性和渗透调节的影响[J]. 核农学报, 2010, 24(6):1269-1273. doi: 10.11869/hnxb.2010.06.1269
[35] HAYAT S, HAYAT Q, ALYEMENI M N, et al. Role of proline under changing environments: a review[J]. Plant Signaling & Behavior, 2012, 7(11): 1456-1466. doi: 10.4161/psb.21949
[36] SCANDALIOS J G. Oxygen stress and superoxide dismutases[J]. Plant Physiology, 1993, 101(1): 7-12. doi: 10.1104/pp.101.1.7
[37] QIN N, XU W, HU L, et al. Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene[J]. Protoplasma, 2016, 253(6): 1503-1512. doi: 10.1007/s00709-015-0906-2
[38] LI M, WANG C, SHI J, et al. Abscisic acid and putrescine synergistically regulate the cold tolerance of melon seedlings[J]. Plant Physiology and Biochemistry, 2021, 166: 1054-1064. doi: 10.1016/j.plaphy.2021.07.011
[39] TEIXEIRA W F, FAGAN E B, SOARES L H, et al. Foliar and seed application of amino acids affects the antioxidant metabolism of the Soybean crop[J]. Frontiers in Plant Science, 2017, 8: 327. doi: 10.3389/fpls.2017.00327