[1] Yue K, Yang W Q, Peng Y, et al. Dynamics of multiple metallic elements during foliar litter decomposition in an alpine forest river[J]. Annals of Forest Science, 2016, 73(2): 547-557. doi: 10.1007/s13595-016-0549-2
[2] Jonczak J. Dynamics, structure and properties of plant litterfall in a 120-year old beech stand in Middle Pomerania between 2007-2010[J]. Soil Science Annual, 2013, 64(1): 8-13. doi: 10.2478/ssa-2013-0002
[3] Song Y Y, Song C C, Ren J S, et al. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China[J]. Science of The Total Environment, 2018, 625: 640-646. doi: 10.1016/j.scitotenv.2017.12.311
[4] Zhu X M, Chen H, Zhang W, et al. Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species[J]. Plant and Soil, 2016, 399(1-2): 61-74. doi: 10.1007/s11104-015-2676-1
[5] Zhang X, Liu Z. Responses of litter decomposition and nutrient release of Bothriochloa ischaemum to soil petroleum contamination and nitrogen fertilization[J]. International Journal of Environmental Science and Technology, 2019, 16(2): 719-728. doi: 10.1007/s13762-018-1727-6
[6] Munasinghe P, Herath H. Effects of nitrogen deposition on foliar litter decomposition and C, N, Ca, and P dynamics in a regenerating forest[J]. Journal of Environmental Professionals Sri Lanka, 2014, 3(1): 30-47. doi: 10.4038/jepsl.v3i1.7312
[7] 李仁洪, 胡庭兴, 涂利华, 等. 华西雨屏区慈竹林凋落叶分解过程养分释放对模拟氮沉降的响应[J]. 林业科学, 2010, 46(8):8-14. doi: 10.11707/j.1001-7488.20100802
[8] 张 林, 李 茂, 徐 俊, 等. 模拟氮沉降对甜槠林分凋落物及主要养分归还量的影响[J]. 土壤通报, 2015, 46(3):648-655.
[9] Kang F H, Liu X J, Zhu B. et al. Wet and dry nitrogen deposition in the central Sichuan Basin of China[J]. Atmospheric Environment, 2016, 143: 39-50. doi: 10.1016/j.atmosenv.2016.08.032
[10] 铁烈华, 张仕斌, 熊梓岑, 等. 华西雨屏区常绿阔叶林凋落叶分解过程中木质素降解对模拟氮、硫沉降的响应[J]. 林业科学研究, 2019, 32(2):25-31.
[11] Xu Z F, Tu L H, Hu T X, et al. Implications of greater than average increases in nitrogen deposition on the western edge of the Szechwan Basin, China[J]. Environmental Pollution, 2013, 177: 201-202. doi: 10.1016/j.envpol.2012.12.031
[12] Fang Y T, Gundersen P, Vogt R D, et al. Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems[J]. Journal of Forest Research, 2011, 16(5): 341-350. doi: 10.1007/s10310-011-0267-4
[13] 周世兴, 黄从德, 向元彬, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落物木质素和纤维素降解的影响[J]. 应用生态学报, 2016, 27(5):1368-1374.
[14] 周世兴, 肖永翔, 向元彬, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响[J]. 生态学报, 2016, 36(22):7428-7435.
[15] Aponte C, García L V, Maranon T. Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time[J]. Ecosystems, 2012, 15(7): 1204-1218. doi: 10.1007/s10021-012-9577-4
[16] Liu R Q, Huang Z Q, McCormack L, et al. Plasticity of fine-root functional traits in the litter layer in response to nitrogen addition in a subtropical forest plantation[J]. Plant and Soil, 2015, 415(1-2): 317-330.
[17] 赵 晶, 闫文德, 郑 威, 等. 樟树人工林凋落物养分含量及归还量对氮沉降的响应[J]. 生态学报, 2016, 36(2):350-359.
[18] 袁颖红, 樊后保, 李燕燕, 等. 模拟氮沉降对土壤酸化和土壤盐基离子含量的影响[J]. 应用与环境生物学报, 2011, 17(4):461-466.
[19] Yue K, García-Palacios P, Parsons S A, et al. Assessing the temporal dynamics of aquatic and terrestrial litter decomposition in an alpine forest[J]. Functional Ecology, 2018, 32(10): 2464-2475. doi: 10.1111/1365-2435.13143
[20] 陈秋凤. 杉木人工林林木养分和凋落物分解对模拟氮沉降的响应[D]. 福州: 福建农林大学, 2006.
[21] Ferreira G W, Soares E M, Oliveira F C, et al. Nutrient release from decomposing Eucalyptus harvest residues following simulated management practices in multiple sites in Brazil[J]. Forest Ecology and Management, 2016, 370: 1-11. doi: 10.1016/j.foreco.2016.03.047
[22] 刘文飞, 樊后保, 袁颖红, 等. 氮沉降对杉木人工林凋落物大量元素归还量的影响[J]. 水土保持学报, 2011, 25(1):137-141.
[23] Zhang T A, Luo Y Q, Chen H Y H, et al. Responses of litter decomposition and nutrient release to N addition: A meta-analysis of terrestrial ecosystems[J]. Applied Soil Ecology, 2018, 128: 35-42. doi: 10.1016/j.apsoil.2018.04.004
[24] 赵 琼, 刘兴宇, 胡亚林, 等. 氮添加对兴安落叶松养分分配和再吸收效率的影响[J]. 林业科学, 2010, 46(5):14-19. doi: 10.11707/j.1001-7488.20100503
[25] Laskowski R, Niklinska M, Maryanski M. The dynamics of chemical elements in forest litter[J]. Ecology, 1995, 76(5): 1393-1406. doi: 10.2307/1938143
[26] Osono T, Hiroshi T. Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest[J]. Journal of Forest Research, 2004, 9(1): 23-31. doi: 10.1007/s10310-003-0047-x
[27] Tu L H, Hu H L, Hu T X, et al. Litterfall, litter decomposition, and nutrient dynamics in two subtropical bamboo plantations of China[J]. Pedosphere, 2014, 24(1): 84-97. doi: 10.1016/S1002-0160(13)60083-1
[28] Tu L H, Hu H L, Hu T X, et al. Decomposition of different litter fractions in a subtropical bamboo ecosystem as affected by experimental nitrogen deposition[J]. Pedosphere, 2011, 21(6): 685-695. doi: 10.1016/S1002-0160(11)60171-9
[29] Yang X, Qu Y B, Zhao H, et al. Litter species diversity is more important than genotypic diversity of dominant grass species Stipa grandis in influencing litter decomposition in a bare field[J]. Science of The Total Environment, 2019, 666: 490-498. doi: 10.1016/j.scitotenv.2019.02.247
[30] Blair J M. Nutrient release from decomposing foliar litter of three tree species with special reference to calcium, magnesium and potassium dynamics[J]. Plant and Soil, 1988, 110(1): 49-55. doi: 10.1007/BF02143538
[31] 宋学贵, 胡庭兴, 鲜骏仁, 等. 川西南常绿阔叶林凋落物分解及养分释放对模拟氮沉降的响应[J]. 应用生态学报, 2007, 18(10):2167-2172.
[32] Fang S, Li H, Xie B. Decomposition and nutrient release of four potential mulching materials for poplar plantations on upland sites[J]. Agroforestry Systems, 2008, 74(1): 27-35. doi: 10.1007/s10457-008-9155-0
[33] 涂利华, 胡庭兴, 张 健, 等. 模拟氮沉降对两种竹林不同凋落物组分分解过程养分释放的影响[J]. 生态学报, 2010, 31(6):1547-1557.
[34] Yang X D, Ni K, Shi Y Z, et al. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J]. Agriculture Ecosystems & Environment, 2018, 252: 74-82.
[35] Hu W J, Wu Q, Liu X, et al. Comparative proteomic analysis reveals the effects of exogenous calcium against acid rain stress in Liquidambar formosana Hanceleaves[J]. Journal of Proteome Research, 2015, 15(1): 216-220.
[36] Dauer J M, Perakis S S. Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status[J]. Forest Ecology and Management, 2014, 334: 64-73. doi: 10.1016/j.foreco.2014.08.029
[37] 肖永翔. 华西雨屏区天然常绿阔叶林土壤微生物和酶活性对模拟氮沉降的响应[D]. 成都: 四川农业大学, 2016.
[38] Wang Q, Kwak J H, Choi W J, et al. Decomposition of trembling aspen leaf litter under long-term nitrogen and sulfur deposition: Effects of litter chemistry and forest floor microbial properties[J]. Forest Ecology and Management, 2018, 412: 53-61. doi: 10.1016/j.foreco.2018.01.042
[39] Wang X, Xu Z W, Lv X T, et al. Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland[J]. Plant and Soil, 2017, 418(1-2): 241-253. doi: 10.1007/s11104-017-3288-8