[1] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540-550. doi: 10.1046/j.1461-0248.2000.00185.x
[2] 曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013, 33(18):5484-5492.
[3] Wagner N D, Hillebrand H, Wacker A, et al. Nutritional indicators and their uses in ecology[J]. Ecology Letters, 2013, 16(4): 535-544. doi: 10.1111/ele.12067
[4] 周 鹏, 耿 燕, 马文红, 等. 温带草地主要优势植物不同器官间功能性状的关联[J]. 植物生态学报, 2010, 34(1):7-16. doi: 10.3773/j.issn.1005-264x.2010.01.003
[5] Güsewell S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266. doi: 10.1111/j.1469-8137.2004.01192.x
[6] He J, Fang J, Wang Z, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115-122. doi: 10.1007/s00442-006-0425-0
[7] Yao F, Chen Y, Yan Z, et al. Biogeographic patterns of structural traits and C:N:P stoichiometry of tree twigs in China’s forests[J]. PLoS ONE, 2015, 10(2): e0116391. doi: 10.1371/journal.pone.0116391
[8] 雷丽群, 卢立华, 农 友, 等. 不同林龄马尾松人工林土壤碳氮磷生态化学计量特征[J]. 林业科学研究, 2017, 30(6):954-960.
[9] 任书杰, 于贵瑞, 陶 波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12):2665-2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
[10] 张乃木, 王克勤, 宋娅丽, 等. 滇中亚高山森林林下植被和凋落物生态化学计量特征[J]. 林业科学研究, 2020, 33(4):127-134.
[11] 孙雪娇, 常顺利, 宋成程, 等. 雪岭云杉不同器官N、P、K化学计量特征随生长阶段的变化[J]. 生态学杂志, 2018, 37(5):1291-1298.
[12] 彭少麟, 陈章和. 广东亚热带森林群落物种多样性[J]. 生态科学, 1983(2):98-104.
[13] 姚庭玉, 陈小梅, 何俊杰, 等. 模拟干旱对鼎湖山季风常绿阔叶林土壤碳氮磷化学计量特征的影响[J]. 西南林业大学学报, 2017, 37(1):104-109.
[14] 何俊杰, 陈小梅, 冯思红, 等. 城郊梯度上南亚热带季风常绿阔叶林土壤C、N、P化学计量特征[J]. 生态学杂志, 2016, 35(3):591-596.
[15] 史军辉, 马学喜, 刘茂秀, 等. 胡杨(Populus euphratica)枝叶根化学计量特征[J]. 中国沙漠, 2017, 37(1):109-115. doi: 10.7522/j.issn.1000-694X.2015.00193
[16] 周 丽, 张卫强, 唐洪辉, 等. 南亚热带中幼龄针阔混交林生态化学计量特征[J]. 生态环境学报, 2014, 23(11):1732-1738. doi: 10.3969/j.issn.1674-5906.2014.11.002
[17] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006. doi: 10.1073/pnas.0403588101
[18] 谢 锦, 常顺利, 张毓涛, 等. 天山北坡植物土壤生态化学计量特征的垂直地带性[J]. 生态学报, 2016, 36(14):4363-4372.
[19] 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J]. 植物生态学报, 2010, 34(1):64-71. doi: 10.3773/j.issn.1005-264x.2010.01.010
[20] 孙连伟, 陈静文, 邓 琦. 全球变化背景下陆地植物N/P生态化学计量学研究进展[J]. 热带亚热带植物学报, 2019, 27(5):534-540. doi: 10.11926/jtsb.4112
[21] He Y Q, Zhu Y G, Smith S E, et al. Interactions between soil moisture content and phosphorus supply in spring wheat plants grown in pot culture[J]. Journal of Plant Nutrition, 2002, 25(4): 913-925. doi: 10.1081/PLN-120002969
[22] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x
[23] Koerselman W, Arthur F M M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450. doi: 10.2307/2404783
[24] 王维奇, 徐玲琳, 曾从盛, 等. 河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2011, 31(23):134-139.
[25] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812): 578-580. doi: 10.1038/35046058
[26] 陈美玲, 崔君滕, 邓 蕾, 等. 黄土高原两种针叶树种不同器官水碳氮磷分配格局及其生态化学计量特征[J]. 地球环境学报, 2018, 9(1):54-63. doi: 10.7515/JEE182004
[27] 陈 霞, 袁在翔, 金雪梅, 等. 紫金山针阔混交林主要植物种群生态位特征[J]. 中南林业科技大学学报, 2020, 40(8):113-119.
[28] 陈 青, 李萌姣, 李 瑶, 等. 鼎湖山南亚热带常绿阔叶林荷木种群动态变化[J]. 广西植物, 2019, 39(3):403-410. doi: 10.11931/guihaia.gxzw201802022
[29] 赵亚芳, 徐福利, 王渭玲, 等. 华北落叶松根茎叶碳氮磷含量及其化学计量学特征的季节变化[J]. 植物学报, 2014, 49(5):560-568.
[30] Mo Q, Li Z, Sayer E J, et al. Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability[J]. Functional Ecology, 2019, 33(3): 503-513. doi: 10.1111/1365-2435.13252
[31] 王 娜, 程瑞梅, 肖文发, 等. 三峡库区马尾松根和叶片的生态化学计量特征[J]. 林业科学研究, 2016, 29(4):536-544. doi: 10.3969/j.issn.1001-1498.2016.04.011
[32] Hedin L O. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10849-10850. doi: 10.1073/pnas.0404222101
[33] Houlton B, Wang Y, Vitousek P, et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 2008, 454: 327-330. doi: 10.1038/nature07028
[34] Kerkhoff A J, Enquist B J, Fagan E W F. Plant Allometry, Stoichiometry and the Temperature-Dependence of Primary Productivity[J]. Global Ecology and Biogeography, 2005, 14(6): 585-598. doi: 10.1111/j.1466-822X.2005.00187.x