[1] GONG Z Z, XIONG L M, SHI H Z, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China (Life Sciences), 2020, 63(5): 635-674. doi: 10.1007/s11427-020-1683-x
[2] ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. doi: 10.1016/j.cell.2016.08.029
[3] XIONG L M, SCHUMAKER K S, ZHU J K. Cell signaling during cold, drought, and salt stress[J]. The Plant Cell, 2002, 14(Suppl): S165-S183.
[4] LUSHCHAK V I. Adaptive response to oxidative stress: bacteria, fungi, plants and animals[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2011, 153(2): 175-190.
[5] HUA D P, WANG C, HE J N, et al. A plasma membrane receptor kinase, GHR1, mediates Abscisic Acid- and hydrogen Peroxide-Regulated stomatal movement in Arabidopsis[J]. The Plant Cell, 2012, 24(6): 2546-2561. doi: 10.1105/tpc.112.100107
[6] LI X D, GAO Y Q, WU W H, et al. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells[J]. Plant Biotechnology Journal, 2022, 20(1): 143-157. doi: 10.1111/pbi.13701
[7] 尹佟明, 朱其慧, 黄敏仁, 等. 多年生植物模式物种基因组研究的历史及进展[J]. 植物分类学报, 2004, 42(5):464-479.
[8] 冯 岩. 略论人工杨树林的栽培史及其资源现状[J]. 农业与技术, 2012, 32(4):44.
[9] ZHANG B F, WANG Z W, DAI X F, et al. A COMPASS histone H3K4 trimethyltransferase pentamer transactivates drought tolerance and growth/biomass production in Populus trichocarpa[J]. New Phytologist, 2023 Dec 14. doi: 10.1111/nph.19481.
[10] SHEN C, ZHANG Y, LI Q, et al. PdGNC confers drought tolerance by mediating stomatal closure resulting from NO and H2O2 production via the direct regulation of PdHXK1 expression in Populus[J]. New Phytologist, 2021, 230(5): 1868-1882. doi: 10.1111/nph.17301
[11] 曾庆银, 刘妍婧, 姜鹏飞, 等. 一种银白杨遗传转化方法[P]. 中国专利: CN201910967371. X, 2021-01-29.
[12] LIU Y J, WANG X R, ZENG Q Y. De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River basin in China[J]. Science China Life Sciences, 2019, 62(5): 609-618. doi: 10.1007/s11427-018-9455-2
[13] 毛 伟, 李玉霖, 张铜会, 等. 不同尺度生态学中植物叶性状研究概述[J]. 中国沙漠, 2012, 32(1):33-41.
[14] TORII K U, KANAOKA M M, PILLITTERI L J, et al. Stomatal development[J]. Plant Signaling & Behavior, 2007, 2(4): 311-313.
[15] ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1): 247-273. doi: 10.1146/annurev.arplant.53.091401.143329
[16] MEDEIROS D B, DALOSO D M, FERNIE A R, et al. Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control[J]. Plant, Cell & Environment, 2015, 38(8): 1457-1470.
[17] NOVAK C A. Closing the gaps: rolling doors that meet mandatory ASHRAE 90.1 standards[J]. Architectural Record, 2016, 204(5): 248-249.
[18] Kim TH, Bohmer M, Hu H, et al. Guard cells signal transduction network: advances in understanding abscisic acid CO2, and Ca2+ signaling[J]. Annual Review of Plant Biology, 2010, 61: 561-591. doi: 10.1146/annurev-arplant-042809-112226
[19] Qi J, Song CP, Wang B, et al. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack[J]. Journal of Integrative Plant Biology, 2018, 60(9): 805-826. doi: 10.1111/jipb.12654
[20] 刘乔斐, 周自云, 杜妮妮. 干旱胁迫与复水对苗期玉米光合特性的影响[J]. 农业工程, 2021, 11(11):112-120. doi: 10.3969/j.issn.2095-1795.2021.11.024
[21] 邓沛怡, 周杰良, 陶抵辉, 等. 干旱胁迫对6种藤本植物光合作用及叶绿素荧光参数的影响[J]. 湖南农业大学学报(自然科学版), 2015, 41(3):263-270.
[22] 井大炜, 邢尚军, 杜振宇, 等. 干旱胁迫对杨树幼苗生长, 光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24(7):1809-1816.
[23] KLINGLER J P, BATELLI G, ZHU J K. ABA receptors: The START of a new paradigm in phytohormone signalling[J]. Journal of Experimental Botany, 2010, 61(12): 3199-3210. doi: 10.1093/jxb/erq151
[24] YU D D, WILDHAGEN H, TYLEWICZ S, et al. Abscisic acid signaling mediates biomass trade-off and allocation in poplar[J]. New Phytologist, 2019, 223(3): 1192-1203. doi: 10.1111/nph.15878
[25] Yang Y L, Li H G, Wang J, et al. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica[J]. Journal of Experimental Botany, 2020, 71(22): 7270-7285. doi: 10.1093/jxb/eraa383