[1] Minich W B. Selenium metabolism and biosynthesis of selenoproteins in the human body[J]. Biochemistry (Mosc), 2022, 87(Suppl 1): S168-S177.
[2] Gladyshev V N, Arnér E S, Berry M J, et al. Selenoprotein gene nomenclature[J]. J Biol Chem, 2016, 291(46): 24036-24040. doi: 10.1074/jbc.M116.756155
[3] Elhodaky M, Diamond A M. Selenium-binding protein 1 in human health and disease[J]. Int J Mol Sci, 2018, 19(11): 3437-3450. doi: 10.3390/ijms19113437
[4] Lei C, Niu X, Ma X, et al. Is selenium deficiency really the cause of Keshan disease?[J]. Environ Geochem Health, 2011, 33(2): 183-188. doi: 10.1007/s10653-010-9331-9
[5] Zhou H, Wang T, Li Q, et al. Prevention of Keshan disease by selenium supplementation: a systematic review and meta-analysis[J]. Biol Trace Elem Res, 2018, 186(1): 98-105. doi: 10.1007/s12011-018-1302-5
[6] Yao Y, Pei F, Kang P. Selenium, iodine, and the relation with Kashin-Beck disease[J]. Nutrition, 2011, 27(11-12): 1095-1100. doi: 10.1016/j.nut.2011.03.002
[7] Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, et al. Selenium and coronary heart disease: a meta-analysis[J]. Am J Clin Nutr, 2006, 84(4): 762-773. doi: 10.1093/ajcn/84.4.762
[8] Cui S, Luo Y, Li Y, et al. Selenium alleviates heart remodeling through Sirt1/AKT/GSK-3β pathway[J]. Int Immunopharmacol, 2022, 111: 109158. doi: 10.1016/j.intimp.2022.109158
[9] Yuan S, Mason A M, Carter P, et al. Selenium and cancer risk: Wide-angled Mendelian randomization analysis[J]. Int J Cancer, 2022, 150(7): 1134-1140. doi: 10.1002/ijc.33902
[10] Rua R M, Nogales F, Carreras O, et al. Selenium, selenoproteins and cancer of the thyroid[J]. J Trace Elem Med Biol, 2023, 76: 127115. doi: 10.1016/j.jtemb.2022.127115
[11] Gorini F, Sabatino L, Pingitore A, et al. Selenium: an element of life essential for thyroid function[J]. Molecules, 2021, 26(23): 7084. doi: 10.3390/molecules26237084
[12] Wang F, Li C, Li S, et al. Selenium and thyroid diseases[J]. Front Endocrinol (Lausanne), 2023, 14: 1133000. doi: 10.3389/fendo.2023.1133000
[13] Alcolea V, Pérez-Silanes S. Selenium as an interesting option for the treatment of Chagas disease: A review[J]. Eur J Med Chem, 2020, 206: 112673. doi: 10.1016/j.ejmech.2020.112673
[14] Martín-Escolano R, Etxebeste-Mitxeltorena M, Martín-Escolano J, et al. Selenium derivatives as promising therapy for Chagas disease: in vitro and in vivo studies[J]. ACS Infect Dis, 2021, 7(6): 1727-1738. doi: 10.1021/acsinfecdis.1c00048
[15] Hossain A, Skalicky M, Brestic M, et al. Selenium biofortification: roles, mechanisms, responses and prospects[J]. Molecules, 2021, 26(4): 881. doi: 10.3390/molecules26040881
[16] Ye Y, Qu J, Pu Y, et al. Selenium biofortification of crop food by beneficial microorganisms[J]. J Fungi (Basel), 2020, 6(2): 59. doi: 10.3390/jof6020059
[17] Yang D, Hu C, Wang X, et al. Microbes: a potential tool for selenium biofortification[J]. Metallomics, 2021, 13(10): mfab054. doi: 10.1093/mtomcs/mfab054
[18] Duborská E, Šebesta M, Matulová M, et al. Current strategies for selenium and iodine biofortification in crop plants[J]. Nutrients, 2022, 14(22): 4717. doi: 10.3390/nu14224717
[19] Zhang L, Chu C. Selenium uptake, transport, metabolism, reutilization, and biofortification in rice[J]. Rice (N Y), 2022, 15(1): 30. doi: 10.1186/s12284-022-00572-6
[20] Silva M A, de Sousa G F, Corguinha A P B, et al. Selenium biofortification of soybean genotypes in a tropical soil via Se-enriched phosphate fertilizers[J]. Front Plant Sci, 2022, 13: 988140. doi: 10.3389/fpls.2022.988140
[21] Liu Y, Huang S, Jiang Z, et al. Selenium biofortification modulates plant growth, microelement and heavy metal concentrations, selenium uptake, and accumulation in black-grained wheat[J]. Front Plant Sci, 2021, 12: 748523. doi: 10.3389/fpls.2021.748523
[22] Lei H, Zhou M, Li B, et al. Humic acid chelated selenium is suitable for wheat biofortification[J]. J Sci Food Agric, 2023, 103(10): 4887-4898. doi: 10.1002/jsfa.12564
[23] Groth S, Budke C, Neugart S, et al. Influence of a selenium biofortification on antioxidant properties and phenolic compounds of apples (Malus domestica)[J]. Antioxidants (Basel), 2020, 9(2): 187. doi: 10.3390/antiox9020187
[24] Hu T, Hui G, Li H, et al. Selenium biofortification in Hericium erinaceus (Lion's Mane mushroom) and its in vitro bioaccessibility[J]. Food Chem, 2020, 331: 127287. doi: 10.1016/j.foodchem.2020.127287
[25] Xu M, Zhu S, Wang L, et al. Influence of Selenium Biofortification on the Growth and Bioactive Metabolites of Ganoderma lucidum[J]. Foods, 2021, 10(8): 1860. doi: 10.3390/foods10081860
[26] Golob A, Novak T, Maršić N K, et al. Biofortification with selenium and iodine changes morphological properties of Brassica oleracea L. var. gongylodes) and increases their contents in tubers[J]. Plant Physiol Biochem, 2020, 150: 234-243. doi: 10.1016/j.plaphy.2020.02.044
[27] Francini A, Quattrini E, Giuffrida F, et al. Biofortification of baby leafy vegetables using nutrient solution containing selenium[J]. J Sci Food Agric, 2023, 103(11): 5472-5480. doi: 10.1002/jsfa.12622
[28] Manfio D, Rodrigues M N F, Savi G D, et al. Brazil nut (Bertholettia excels H. B. K. ) selenium distribution and physical chemical characteristics of shell, brown skin and edible part from two Amazon regions[J]. Asian J Agri Rural Dev, 2012, 2(2): 287-293.
[29] 陈红星, 陈素贞, 张 迟, 等. 香榧新品种‘玉山果榧’的选育[J]. 中国果树, 2021(8):79-80,109.
[30] 胡文翠, 张 迟, 厉 锋, 等. 香榧良种‘朱岩榧’的选育[J]. 果树学报, 2021, 38(3):455-458.
[31] 任少华, 龙成昌, 王 陈, 等. 香榧及其优质高产栽培技术探讨[J]. 现代园艺, 2021, 44(19):72-74. doi: 10.3969/j.issn.1006-4958.2021.19.028
[32] 李爱华, 许秀环, 李金柱, 等. 施加硒肥条件下的印度梨形孢接种对香榧幼苗根系发育、气体交换及其叶片硒累积的影响[J]. 安徽农业大学学报, 2022, 49(5):735-740.
[33] Want E J, Masson P, Michopoulos F, et al. Global metabolic profiling of animal and human tissues via UPLC-MS[J]. Nature Protocols, 2012, 8(1): 17-32.
[34] 阙小峰, 余 雁, 方志成, 等. 葡萄叶面肥硒特性及可溶态硒分布研究[J]. 湖北农业科学, 2022, 61(7):31-34.
[35] 陈锦平, 农梦玲, 何景云, 等. 不同硒肥处理对杧果果实硒含量及品种的影响[J]. 热带农业科学, 2021, 41(6):1-5.
[36] 王永刚. 氨基酸硒叶面肥在晚秋黄梨上的应用效果[J]. 河北果树, 2017, 168(4):3-5.
[37] Mao Z G, Tian L Y, Liu J, et al. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy[J]. Phytomedicine, 2022, 101: 154111. doi: 10.1016/j.phymed.2022.154111
[38] Hsu R J, Peng K Y, Hsu W L, et al. Z-ligustilide induces c-Myc-dependent apoptosis via activation of ER-stress signaling in hypoxic oral cancer Cells[J]. Front Oncol, 2022, 12: 824043. doi: 10.3389/fonc.2022.824043
[39] Ma J, Mei J, Lu J, et al. Ligustilide promotes apoptosis of cancer-associated fibroblasts via the TLR4 pathways[J]. Food Chem Toxicol, 2020, 135: 110991. doi: 10.1016/j.fct.2019.110991
[40] Sodhi C P, Wipf P, Yamaguchi Y, et al. The human milk oligosaccharides 2'-fucosyllactose and 6'-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling[J]. Pediatr Res, 2021, 89(1): 91-101. doi: 10.1038/s41390-020-0852-3
[41] Nguyen T L L, Jin Y, Kim L, et al. Inhibitory effects of 6'-sialyllactose on angiotensin II-induced proliferation, migration, and osteogenic switching in vascular smooth muscle cells[J]. Arch Pharm Res, 2022, 45(9): 658-670. doi: 10.1007/s12272-022-01404-3
[42] Zaiken K, Cheng J W. Azilsartan medoxomil: a new Angiotensin receptor blocker[J]. Clin Ther, 2011, 33(11): 1577-1589. doi: 10.1016/j.clinthera.2011.10.007
[43] Baker W L, White W B. Azilsartan medoxomil: a new angiotensin II receptor antagonist for treatment of hypertension[J]. Ann Pharmacother, 2011, 45(12): 1506-1515. doi: 10.1345/aph.1Q468
[44] Pradhan A, Tiwari A, Sethi R. Azilsartan: Current Evidence and Perspectives in Management of Hypertension[J]. Int J Hypertens, 2019, 2019: 1824621.
[45] Han J, Tang H, Yao L, et al. Azilsartan protects against hyperglycemia-induced hyperpermeability of the blood-brain barrier[J]. Bioengineered, 2021, 12(1): 3621-3633. doi: 10.1080/21655979.2021.1948950
[46] Yamada H, Nagai T, Takemoto N, et al. Plantagoside, a novel alpha-mannosidase inhibitor isolated from the seeds of Plantago asiatica, suppresses immune response[J]. Biochem Biophys Res Commun, 1989, 165(3): 1292-1298. doi: 10.1016/0006-291X(89)92743-5
[47] Bajrai L H, Alharbi A S, El-Day M M, et al. Identification of Antiviral Compounds against Monkeypox Virus Profilin-like Protein A42R from Plantago lanceolata[J]. Molecules, 2022, 27(22): 7718. doi: 10.3390/molecules27227718
[48] Rodríguez-Arce E, Saldías M. Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases[J]. Biomed Pharmacother, 2021, 143: 112236. doi: 10.1016/j.biopha.2021.112236
[49] Gul S, Maqbool M F, Zheng D, et al. Alpinetin: a Dietary Flavonoid with Diverse Anticancer Effects[J]. Appl Biochem Biotechnol, 2022, 194(9): 4220-4243. doi: 10.1007/s12010-022-03960-2
[50] Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents[J]. Proc Nutr Soc, 2010, 69(3): 273-278. doi: 10.1017/S002966511000162X