[1] IPCC, Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge and New York: Cambridge University Press (In Press), 2021.
[2] YU G R, JIA Y L, HE N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424-429. doi: 10.1038/s41561-019-0352-4
[3] JIA Y L, YU G R, GAO Y N, et al. Global inorganic nitrogen dry deposition inferred from ground-and space-based measurements[J]. Scientific Reports, 2016, 6: 19810. doi: 10.1038/srep19810
[4] LIU Y, HE N P, WEN X F, et al. Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems[J]. Agriculture Ecosystem & Environment, 2016, 215: 40-46.
[5] BAI E, LI S L, XU W H, et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics[J]. The New Phytologist, 2013, 199(2): 441-451. doi: 10.1111/nph.12252
[6] MA Z L, CHEN Y M, XU W J, et al. Effects of warming on the stoichiometry of soil microbial biomass and extracellular enzymes in an alpine shrubland[J]. Geoderma, 2023, 430: 116329. doi: 10.1016/j.geoderma.2023.116329
[7] 郑兴蕊, 王克勤, 宋娅丽, 等. 滇中亚高山不同森林土壤酶活性对模拟N 沉降的响应[J]. 林业科学研究, 2021, 34(2):50-62.
[8] WANG X D, FENG J G, AO G K L, et al. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness[J]. Soil Biology and Biochemistry, 2023, 179: 108982. doi: 10.1016/j.soilbio.2023.108982
[9] 谢君毅, 徐 侠, 蔡 斌, 等. “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2):1-11.
[10] BUTLER S M, MELILLO J M, JOHNSON J E, et al. Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure[J]. Oecologia, 2012, 168(3): 819-828. doi: 10.1007/s00442-011-2133-7
[11] 唐海龙, 王景燕, 黄 帅, 等. 华西雨屏区常绿阔叶林土壤氮矿化对温度和湿度变化的响应[J]. 甘肃农业大学学报, 2019, 54(2):124-131.
[12] 郭亚兵, 毛晋花, 王 聪, 等. 氮、磷添加对热带森林土壤氮转化及损失影响的研究进展[J]. 生态学杂志, 2021, 40(10):3339-3354.
[13] GAO W L, YANG H, KOU L, et al. Effects of nitrogen deposition and fertilization on N transformations in forest soils: a review[J]. Journal of Soils and Sediments, 2015, 15(4): 863-879. doi: 10.1007/s11368-015-1064-z
[14] 刘彩霞, 焦如珍, 董玉红, 等. 杉木林土壤微生物区系对短期模拟氮沉降的响应[J]. 林业科学研究, 2015, 28(2):271-276.
[15] LU M, YANG Y H, UO Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis[J]. New Phytologist, 2011, 189(4): 1040-1050. doi: 10.1111/j.1469-8137.2010.03563.x
[16] GAO W L, KOU L, ZHANG J B, et al. Enhanced deposition of nitrate alters microbial cycling of N in a subtropical forest soil[J]. Biology and Fertility of Soils, 2016, 52(7): 977-986. doi: 10.1007/s00374-016-1134-4
[17] WANG X Y, SICILIANO S, HELGASON B, et al. Responses of a mountain peatland to increasing temperature: A microcosm study of greenhouse gas emissions and microbial community dynamics[J]. Soil Biology and Biochemistry, 2017, 110: 22-33. doi: 10.1016/j.soilbio.2017.02.013
[18] VOIGT C, LAMPRECHT R E, MARUSHCHAK M E, et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases: Carbon dioxide, methane, and nitrous oxide[J]. Global Change Biology, 2017, 23(8): 3121-3138. doi: 10.1111/gcb.13563
[19] WANG B, LI J L, WAN Y F, et al. Responses of yield, CH4 and N2O emissions to elevated atmospheric temperature and CO2 concentration in a double rice cropping system[J]. European Journal of Agronomy, 2018, 96: 60-69. doi: 10.1016/j.eja.2018.01.014
[20] LIU B B, MØRKVED P T, FROSTEGÅRD Å, et al. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH[J]. Fems Microbiology Ecology, 2010, 72(3): 407-417. doi: 10.1111/j.1574-6941.2010.00856.x
[21] LIU X C, DONG Y S, QI Y C, et al. Response of N2O emission to water and nitrogen addition in temperate typical steppe soil in Inner Mongolia, China[J]. Soil and Tillage Research, 2015, 151(1): 9-17.
[22] LIU Y, MEN M X, PENG Z P, et al. Nitrogen availability determines ecosystem productivity in response to climate warming[J]. Ecology, 2022, 103(12): e3823.
[23] GUO J F, YANG Z J, LIN C F, et al. Conversion of a natural evergreen broadleaved forest into coniferous plantations in a subtropical area: effects on composition of soil microbial communities and soil respiration[J]. Biology and Fertility of Soils, 2016, 52(6): 799-809. doi: 10.1007/s00374-016-1120-x
[24] IPCC. Climate change 2013: The physical science basis. Contribution to working group I the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2013.
[25] MELILLO J M, BULTER S, JOHNSON J, et al. Soil-warming carbon-nitrogen interactions and forest carbon budgets[J]. PNAS, 2011, 108(23): 9508-9512. doi: 10.1073/pnas.1018189108
[26] 元晓春, 杨景清, 王 铮, 等. 增温和施氮对亚热带杉木人工林土壤溶液养分的影响[J]. 生态学报, 2018, 38(7):2323-2332.
[27] ZHANG Q F, XIE J S, LYU M K, et al. Short-term effects of soil warming and nitrogen addition on the N: P stoichiometry of Cunninghamia lanceolata, in subtropical regions[J]. Plant and Soil, 2017, 411(1-2): 395-407. doi: 10.1007/s11104-016-3037-4
[28] CHEN F S, NIKLAS K J, LIU Y, et al. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Cunninghamia lanceolate leaves and twigs differing in age[J]. Tree Physiology, 2015, 35(10): 1106-1117. doi: 10.1093/treephys/tpv076
[29] 聂二旗, 张心昱, 郑国砥, 等. 氮磷添加对杉木林土壤碳氮矿化速率及酶动力学特征的影响[J]. 生态学报, 2018, 38(2):615-623.
[30] 郎 漫, 李 平, 张小川. 土地利用方式和培养温度对土壤氮转化及温室气体排放的影响[J]. 应用生态学报, 2012, 23(10):2670-2676.
[31] 周才平, 欧阳华. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J]. 植物生态学报, 2001, 25(2):204-209.
[32] 赵文君, 刘永涛, 谭成江, 等. 模拟氮添加对喀斯特原生乔木林土壤氮矿化的影响[J]. 中南林业科技大学学报, 2021, 41(7):124-131.
[33] 胡星云, 孙志高, 张党玉, 等. 外源氮输入对黄河口碱蓬湿地土壤碳氮含量动态的影响[J]. 水土保持学报, 2017, 31(6):204-211.
[34] 刘志江, 林伟盛, 杨舟然, 等. 模拟增温和氮沉降对中亚热带杉木幼林土壤有效氮的影响[J]. 生态学报, 2017, 37(1):44-53.
[35] 张 欣, 任海燕, 康 静, 等. 增温和施氮对内蒙古荒漠草原土壤理化性质的影响[J]. 中国草地学报, 2021, 43(6):17-24.
[36] 郎 漫, 吴昌福, 苏孝纯, 等. 东北人工红松针叶林和天然次生阔叶混交林林下土壤氮初级转化速率特征[J]. 林业科学研究, 2022, 35(3):63-71.
[37] 徐小惠, 刁华杰, 覃楚仪, 等. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应[J]. 植物生态学报, 2021, 45(1):85-95. doi: 10.17521/cjpe.2020.0153
[38] GUNDERSEN P, EMMETT B A, KJØNAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data[J]. Forest Ecology and management, 1998, 101(1-3): 37-55. doi: 10.1016/S0378-1127(97)00124-2
[39] CHENG Y, WANG J, GE Z W, et al. Background nitrogen deposition controls the effects of experimental nitrogen addition on soil gross N transformations in forest ecosystems[J]. Biogeochemistry, 2020, 151(2-3): 335-341. doi: 10.1007/s10533-020-00722-2
[40] 王小鸽, 彭长辉, 薛 巍, 等. 增温对秦岭温带森林土壤N2O通量的影响[J]. 西南林业大学学报(自然科学版), 2021, 41(4):35-41.
[41] 唐偲頔, 张 政, 蔡小真, 等. 增温和隔离降雨对亚热带森林土壤N2O通量的影响[J]. 应用生态学报, 2017, 28(10):3119-3126.
[42] CUI Q, SONG C C, WANG X W, et al. Rapid N2O fluxes at high level of nitrate nitrogen addition during freeze–thaw events in boreal peatlands of Northeast China[J]. Atmospheric Environment, 2016, 135: 1-8. doi: 10.1016/j.atmosenv.2016.03.053
[43] 邓米林, 冯蒙蒙, 刘小飞, 等. 模拟氮沉降降低亚热带米槠天然林氧化亚氮排放潜势[J]. 应用生态学报, 2022, 33(10):2705-2710.
[44] HRUSKA J, KOHLER S, LAUDON H, et al. Is a universal model of organic acidity possible: Comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones[J]. Environmental Science and Technology, 2003, 37(9): 1726-1730. doi: 10.1021/es0201552
[45] PISANI O, FREY S D, SIMPSON A J, et al. Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level[J]. Biogeochemistry, 2015, 123(3): 391-409. doi: 10.1007/s10533-015-0073-8
[46] YUAN X C, SI Y T, LIN W S, et al. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation[J]. PLoS ONE, 2018, 13(1): e0191403. doi: 10.1371/journal.pone.0191403
[47] BÁRTA J, MELICHOVÁ T, VANĚK D, et al. Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil[J]. Biogeochemistry, 2010, 101(1-3): 123-132. doi: 10.1007/s10533-010-9430-9
[48] ZHANG Q L, LIU Y, AI G M, et al. The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7[J]. Bioresource technology, 2012, 108: 35-44. doi: 10.1016/j.biortech.2011.12.139