[1] YALLEY M K, ADUSU D, BUNYAMIN A R, et al. Natural regeneration of indigenous tree species in Broussonetia papyrifera invaded sites in pra-anum forest reserve[J]. International Journal of Forestry Research, 2020, 2020: 6347962.
[2] JIAO P, CHAO Y L, WEN H Z, et al. Integrative metabolome and transcriptome analysis of flavonoid biosynthesis genes in Broussonetia papyrifera leaves from the perspective of sex differentiation[J]. Frontiers in Plant Science, 2022, 13: 900030. doi: 10.3389/fpls.2022.900030
[3] FENG J, DONG P, LI R M, et al. Effects of wood fiber properties on mold resistance of wood polypropylene composites[J]. International Biodeterioration & Biodegradation, 2019, 140: 152-159.
[4] GUO F J, FENG L, HUANG C, et al. Prenylflavone derivatives from Broussonetia papyrifera, inhibit the growth of breast cancer cells in vitro and in vivo[J]. Phytochemistry Letters, 2013, 6(3): 331-336. doi: 10.1016/j.phytol.2013.03.017
[5] PARK J Y, YUK H J, RYU H W, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32(1): 504-515. doi: 10.1080/14756366.2016.1265519
[6] 刘 洋. 组织培养条件下构树对重金属镉和锰的耐受性研究[D]. 长沙: 中南林业科技大学, 2021: 42-46.
[7] ZENG P, GUO Z H, XIAO X Y, et al. Tolerance capacities of Broussonetia papyrifera to heavy metal(loid)s and its phytoremediation potential of the contaminated soil[J]. International Journal of Phytoremediation, 2022, 24(6): 580-589.
[8] XU Z G, DONG M, PENG X Y, et al. New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis[J]. Ecotoxicology and Environmental Safety, 2019, 171(APR.): 301-312.
[9] LI C,XU J, DENG Y, et al. Selection of reference genes for normalization of cranberry (Vaccinium macrocarpon Ait. ) gene expression under different experimental conditions[J]. PLoS ONE, 2019, 14(11): e0224798. doi: 10.1371/journal.pone.0224798
[10] XIAO F, ZHENG Y F, CHEN J L, et al. Selection and validation of reference genes in all-red Amaranth ( Amaranthus tricolor L.) seedlings under different culture conditions[J]. Journal of Horticultural Science and Biotechnology, 2021, 96(5): 1-10.
[11] 胡宁宁, 郭慧琴, 李西良, 等. 羊草不同组织实时定量PCR 内参基因的筛选[J]. 草业科学, 2017, 34(7):1434-1441.
[12] 齐香玉, 陈双双, 冯 景, 等. 茉莉花实时荧光定量PCR内参基因的筛选与验证[J]. 华北农学报, 2020, 35(6):22-30.
[13] 华雅洁, 岳远征, 杨秀莲, 等. 海州常山叶片实时荧光定量PCR的内参基因选择[J]. 林业科学研究, 2022, 35(2):194-202.
[14] SHAKEEL M, RODRIGUEZ A, TAHIR U B, et al. Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects[J]. Biotechnology Letters, 2018, 40(2): 227-236. doi: 10.1007/s10529-017-2465-4
[15] VANDESOMPELE J, PRETER K D, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): RESEARCH0034.
[16] ANDERSEN C L, JENSEN J L, RNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. American Association for Cancer Research, 2004, 64(15): 5245-5250.
[17] PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509-515. doi: 10.1023/B:BILE.0000019559.84305.47
[18] CHEN W R, FENG Y, CHAO Y E. Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L. ) genotypes with different zinc efficiency[J]. Russian Journal of Plant Physiology, 2008, 55(3): 400-409. doi: 10.1134/S1021443708030175
[19] LI X S, LIANG Y Q, GAO B, et al. ScDREB10, an A-5c type of DREB gene of the desert moss Syntrichia caninervis, confers ssmotic and salt tolerances to Arabidopsis[J]. Genes, 2019, 10(2): 146.
[20] 朱灵英, 王一博, 王宝婕, 等. 越南参变种实时荧光定量PCR内参基因的筛选和验证[J]. 植物生理学报, 2020, 56(2):327-335.
[21] 李铁铮, 王金玲, 刘 晓, 等. 管花肉苁蓉实时荧光定量PCR分析中内参基因的选择和验证[J]. 植物生理学报, 2021, 57(4):969-981.
[22] 杨 坤, 黄 超, 卢 山, 等. 铜胁迫下紫鸭跖草根组织实时定量PCR内参基因的选择[J]. 植物生理学报, 2021, 57(1):195-204.
[23] ZHU L F, YANG C Q, YOU Y H, et al. Validation of reference genes for qRT-PCR analysis in peel and flesh of six apple cultivars (Malus domestica) at diverse stages of fruit development[J]. Scientia Horticulturae, 2019, 244: 165-171. doi: 10.1016/j.scienta.2018.09.033
[24] 何 毅, 张 欣, 谢牧洪, 等. 构树BpbHLH149转录因子转录酵母的Cd胁迫响应功能[J]. 东北林业大学学报, 2022, 50(6):21-26. doi: 10.13759/j.cnki.dlxb.2022.06.007
[25] 陈思思, 谢牧洪, 崔茂凯, 等. 构树转录因子BpbZIP1的鉴定及镉胁迫响应分析[J]. 植物研究, 2022, 42(3):394-402.
[26] PENG X J, LIU H, CHEN P L, et al. A Chromosome-Scale genome assembly of paper mulberry (Broussonetia papyrifera) provides new insights into its forage and papermaking usage[J]. Molecular Plant, 2019, 12(5): 661-677. doi: 10.1016/j.molp.2019.01.021
[27] 张 颖, 陈婉婷, 陈冉红, 等. 杉木实时荧光定量PCR分析中内参基因的选择[J]. 林业科学研究, 2019, 32(2):65-72.
[28] 杨英英, 赵林姣, 杨桂娟, 等. ‘麦缘锦楸’叶色表型qRT-PCR内参基因筛选及验证[J]. 林业科学研究, 2022, 35(1):123-131.
[29] 周成城, 荣俊冬, 谢德金, 等. 福建柏实时荧光定量PCR内参基因的选择[J]. 林业科学研究, 2021, 34(1):137-145.
[30] 丁 戈, 黄 杨, 陈伦林, 等. 基于转录组测序的铝胁迫下甘蓝型油菜新内参基因的发掘与引物开发[J]. 华北农学报, 2021, 36(1):1-9. doi: 10.7668/hbnxb.20191565
[31] 储文渊, 王玉娇, 朱东悦, 等. 盐和干旱胁迫下杨树新内参基因的筛选[J]. 林业科学, 2017, 53(10):70-79. doi: 10.11707/j.1001-7488.20171008
[32] 段国敏, 李田园, 田 敏, 等. 扇脉杓兰实时荧光定量PCR内参基因的筛选[J]. 核农学报, 2021, 35(3):576-585. doi: 10.11869/j.issn.100-8551.2021.03.0576
[33] KIM Y H, YANG K S, RYU S H, et al. Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweetpotato[J]. Plant Physiology and Biochemistry, 2008, 46(2): 196-204. doi: 10.1016/j.plaphy.2007.09.012
[34] 冯德明, 温佩颖, 赵 畅, 等. 刚毛柽柳ThDREB基因在酵母中的表达及抗逆能力分析[J]. 植物研究, 2017, 37(1):63-68. doi: 10.7525/j.issn.1673-5102.2017.01.009