[1] Lombard L, Crous P W, Wingfield B D, et al. Species concepts in Calonectria (Cylindrocladium)[J]. Studies in Mycology, 2010, 66:1-13. doi: 10.3114/sim.2010.66.01
[2] Lombard L, Chen S F, Mou X, et al. New species, hyper-diversity and potential importance of Calonectria spp. from Eucalyptus in South China[J]. Studies in Mycology, 2015, 80:151-188. doi: 10.1016/j.simyco.2014.11.003
[3] 陈全助, 郭文硕, 叶小真, 等.福建省桉树焦枯病菌分类鉴定[J].福建林学院学报, 2013, 33(2):176-182. doi: 10.3969/j.issn.1001-389X.2013.02.015
[4] Chen S F, Lombard L, Roux J, et al. Novel species of Calonectria associated with Eucalyptus leaf blight in Southeast China[J]. Persoonia, 2011, 26:1-12. doi: 10.3767/003158511X555236
[5] 朱建华, 郭文硕, 陈红梅, 等.桉树焦枯病对桉树生长量的损失估计研究[J].中国森林病虫, 2011, 30(05):6-10. doi: 10.3969/j.issn.1671-0886.2011.05.002
[6] 陈全助, 桉树种系对焦枯病抗性的初步测定[J].福建林学院学报, 2010, 30(4):297-299. doi: 10.3969/j.issn.1001-389X.2010.04.003
[7] 李国清, 李洁琼, 刘菲菲, 等. 12种桉树焦枯病病原菌对10种桉树无性系致病性初步分析[J].桉树科技, 2014, 31(4):1-7. doi: 10.3969/j.issn.1674-3172.2014.04.001
[8] Rodas C A, Lombard L, Gryzenhoinf M, et al. Cylindrocladium blight of Eucalyptus grandis in Colombia[J]. Australasian Plant Pathology, 2005, 34(2):143-149. doi: 10.1071/AP05012
[9] Dixon R A and Paiva N L.Stress-induced phenylpropanoid metabolism[J]. Plant Cell, 1995, 7(7):1085. doi: 10.2307/3870059
[10] Naoumkina M A, Zhao Q, Gallego-Giraldo L, et al. Genome-wide analysis of phenylpropanoid defence pathways[J]. Molecular Plant Pathology, 2010, 11(6):829-846.
[11] Huang J, Gu M, Lai Z, et al. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress[J]. Plant Physiology, 2010, 153(4):1526-1538. doi: 10.1104/pp.110.157370
[12] 徐晓梅, 杨署光.苯丙氨酸解氨酶研究进展[J].安徽农业科学, 2009, 37(31):15115-15119, 15122 doi: 10.3969/j.issn.0517-6611.2009.31.012
[13] 曾永三, 王振中.苯丙氨酸解氨酶在植物抗病反应中的作用[J].仲恺农业技术学院学报, 1999, 12(3):56-65.
[14] Vaganan M M, Ravi I, Nandakumar A, et al. Phenylpropanoid enzymes, phenolic polymers and metabolites as chemical defenses to infection of Pratylenchus coffeae in roots of resistant and susceptible bananas (Musa spp.)[J]. Indian Journal of Experimental Biology, 2014, 52(3):252-260.
[15] 张树武, 徐秉良, 刘佳, 等.白粉病菌侵染对美洲南瓜不同抗性品种PAL基因表达量的影响[J].核农学报, 2015, 29(10):1876-1883. doi: 10.11869/j.issn.100-8551.2015.10.1876
[16] 虞光辉, 王桂平, 王亮, 等.小麦PAL基因的克隆及赤霉菌诱导下的表达分析[J].植物遗传资源学报, 2015, 16(5):1055-1061.
[17] 张江涛.苯丙氨酸解氨酶(PAL)与水稻抗稻瘟病的关系[J].植物生理学通讯, 1987(6):34-37.
[18] 贺字典, 高增贵, 庄敬华, 等.玉米丝黑穗病菌对寄主防御相关酶活性的影响[J].玉米科学, 2006, 14(2):150-151. doi: 10.3969/j.issn.1005-0906.2006.02.048
[19] 郭文硕.锥栗对栗疫病的抗性与苯丙氨酸解氨酶的关系[J].林业科学, 2001, 37(1):90-93. doi: 10.3321/j.issn:1001-7488.2001.01.013
[20] Feng L Z, Guo W S, Xie W F, et al. Construction and analysis of a SSH cDNA library of Eucalyptus grandis×Eucalyptus urophylla 9224 induced by Cylindrocladium quinqueseptatum[J]. Botany, 2012, 90(12):1277-1283. doi: 10.1139/b2012-099
[21] 杨婕, 郭文硕, 叶小真, 等.巨桉叶片总RNA提取方法比较[J].基因组学与应用生物学, 2015, 34(6):1272-1276.
[22] Akimoto S, Ishino T, Terada T, et al. A phenylalanine ammonia-lyase gene (ErPAL1) from Eucalyptus robusta: molecular cloning, expression and characterization[J]. Bulletin University of Tokyo Forest, 2013, 128:121-137.
[23] Zhao S, Park C H, Li X, et al. Accumulation of rutin and betulinic acid and expression of phenylpropanoid and triterpenoid biosynthetic genes in mulberry (Morus alba L.)[J]. Journal Agricultural and Food Chemistry, 2015, 63(38):8622-8630. doi: 10.1021/acs.jafc.5b03221
[24] 冯立娟, 尹燕雷, 焦其庆, 等.石榴PAL基因的克隆与表达分析[J].核农学报, 2018, 32(7):1320-1329.
[25] Ma W, Wu M, Wu Y, et al. Cloning and characterisation of a phenylalanine ammonia-lyase gene from Rhus chinensis[J]. Plant Cell Reports, 2013, 32(8):1179-1190. doi: 10.1007/s00299-013-1413-6
[26] Chen Z J, Cao Z M, Yu Z D, et al. Cloning and characterization of defense-related genes from Populus szechuanica infected with rust fungus Melampsora larici-populina[J]. Genetics and Molecular Research, 2016, 15(1). doi:10.4238/gmr.15017314.
[27] Cass C L, Peraldi A, Dowd P, et al. Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium[J]. Journal of Experimental Botany, 2015, 66(14):4317-4335. doi: 10.1093/jxb/erv269
[28] Tian L, Shi S, Nasir F, et al. Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses[J]. Rice, 2018, 11(1):26 doi: 10.1186/s12284-018-0211-8
[29] Giberti S, Bertea C M, Narayana R, et al. Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae[J]. Journal of Plant Physiology, 2012, 169(3):249-254.
[30] Kim D S and Hwang B K. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens[J]. Journal of Experimental Botany, 2014, 65(9):2295-2306. doi: 10.1093/jxb/eru109
[31] Shine M B, Yang J W, El-Habbak M, et al. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean[J]. New Phytology, 2016, 212:627-636. doi: 10.1111/nph.14078
[32] Tonnessen BW, Manosalva P, Lang J M, et al. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance[J]. Plant Molecular Biology, 2015, 87(3):273-286 doi: 10.1007/s11103-014-0275-9
[33] Li Y X, Zhang W, Dong H X, et al. Salicylic acid in Populus tomentosa is a remote signalling molecule induced by Botryosphaeria dothidea infection[J].Science Report, 2018, 8(1):14059 doi: 10.1038/s41598-018-32204-9
[34] 冯丽贞, 陈全助, 郭文硕, 等.桉树的次生代谢及其对焦枯病抗性的关系[J].中国生态农业学报, 2008, 16(2):426-430.
[35] 冯丽贞, 陈全助, 郭文硕, 等.植物防御酶与桉树对焦枯病抗性的关系[J].中国生态农业学报, 2008, 16(5):1188-1191.