[1] 何艺玲, 傅懋毅. 人工林林下植被的研究现状[J]. 林业科学研究, 2002, 15(6):727-733. doi: 10.3321/j.issn:1001-1498.2002.06.015
[2] Wagner R G, Little K M, Richardson B, et al. The role of vegetation management for enhancing productivity of the world’s forests[J]. Forestry, 2006, 79(1): 57-79. doi: 10.1093/forestry/cpi057
[3] Powers R F, Busse M D, McFarlane K J, et al. Long-term effects of silviculture on soil carbon storage: does vegetation control make a difference[J]. Forestry, 2013, 86(1): 47-58. doi: 10.1093/forestry/cps067
[4] Li Y F, Zhang J J, Chang S X, et al. Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China[J]. Forest Ecology and Management, 2013, 303: 121-130. doi: 10.1016/j.foreco.2013.04.021
[5] Wu J P, Liu Z F, Huang G M, et al. Response of soil respiration and ecosystem carbon budget to vegetation removal in Eucalyptus plantations with contrasting ages[J]. Scientific Reports, 2014, 4: 6262.
[6] Nannipieri P, Trasar-Cepeda C, Dick R P. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis[J]. Biology and Fertility of Soils, 2018, 54(1): 11-19. doi: 10.1007/s00374-017-1245-6
[7] Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216-234. doi: 10.1016/j.soilbio.2012.11.009
[8] Xu Z W, Yu G R, Zhang X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biology and Biochemistry, 2017, 104: 152-163. doi: 10.1016/j.soilbio.2016.10.020
[9] Cui Y X, Fang L C, Deng L, et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region[J]. Science of the Total Environment, 2019, 658: 1440-1451. doi: 10.1016/j.scitotenv.2018.12.289
[10] Yang Y, Zhang X Y, Zhang C, et al. Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities[J]. Biogeosciences, 2018, 15(14): 4481-4494. doi: 10.5194/bg-15-4481-2018
[11] Liu Z F, Wu J P, Zhou L X, et al. Effect of understory fern (Dicranopteris dichotoma) removal on substrate utilization patterns of culturable soil bacterial communities in subtropical Eucalyptus plantations[J]. Pedobiologia, 2012, 55(1): 7-13. doi: 10.1016/j.pedobi.2011.07.014
[12] Wang Q K, Wang S L, Zhang J W. Assessing the effects of vegetation types on carbon storage fifteen years after reforestation on a Chinese fir site[J]. Forest Ecology and Management, 2009, 258(7): 1437-1441. doi: 10.1016/j.foreco.2009.06.050
[13] 盛炜彤, 范少辉. 杉木及其人工林自身特性对长期立地生产力的影响[J]. 林业科学研究, 2002, 15(6):629-636. doi: 10.3321/j.issn:1001-1498.2002.06.001
[14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[15] Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. doi: 10.1016/S0038-0717(02)00074-3
[16] Wang F M, Zou B, Li H F, et al. The effect of understory removal on microclimate and soil properties in two subtropical lumber plantations[J]. Journal of Forest Research, 2014, 19(1): 238-243. doi: 10.1007/s10310-013-0395-0
[17] 李 程, 尤业明, 唐佐芯, 等. 碳源输入量变化对河南宝天曼锐齿栎林土壤酶活性的影响[J]. 林业科学研究, 2018, 31(4):23-30.
[18] Feng J, Turner B L, Wei K, et al. Divergent composition and turnover of soil organic nitrogen along a climate gradient in arid and semiarid grasslands[J]. Geoderma, 2018, 327: 36-44. doi: 10.1016/j.geoderma.2018.04.020
[19] 曹光球, 费裕翀, 路 锦, 等. 林下植被不同管理措施培育杉木大径材林分土壤酶活性差异及质量评价[J]. 林业科学研究, 2020, 33(3):76-84.
[20] Dijkstra F A, Carrillo Y, Pendall E, et al. Rhizosphere priming: a nutrient perspective[J]. Fronties in Microbiology, 2013, 4: 216.
[21] Margalef O, Sardans J, Fernandez-Martinez M, et al. Global patterns of phosphatase activity in natural soils[J]. Scientific Reports, 2017, 7(1): 1-13. doi: 10.1038/s41598-016-0028-x
[22] Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biology and Biochemistry, 2005, 37(5): 937-944. doi: 10.1016/j.soilbio.2004.09.014
[23] Wu J P, Liu Z F, Wang X L, et al. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China[J]. Functional Ecology, 2011, 25(4): 921-931. doi: 10.1111/j.1365-2435.2011.01845.x
[24] Rosling A, Midgley M G, Cheeke T, et al. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees[J]. New Phytologist, 2016, 209(3): 1184-1195. doi: 10.1111/nph.13720
[25] Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology letters, 2008, 11(11): 1252-1264. doi: 10.1111/j.1461-0248.2008.01245.x
[26] 乔 航, 莫小勤, 罗艳华, 等. 不同林龄油茶人工林土壤酶化学计量及其影响因素[J]. 生态学报, 2019, 39(6):1887-1896.
[27] 曾晓敏, 范跃新, 林开淼, 等. 亚热带不同植被类型土壤磷组分特征及其影响因素[J]. 应用生态学报, 2018, 29(7):2156-2162.
[28] 袁 萍, 周嘉聪, 张秋芳, 等. 中亚热带不同森林更新方式生态酶化学计量特征[J]. 生态学报, 2018, 38(18):6741-6748.
[29] Liu J L., Yang Z L, Dang P, et al. Response of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: a chronosequence approach[J]. Plant and Soil, 2018, 423(1-2): 327-338. doi: 10.1007/s11104-017-3516-2
[30] Zhang W, Xu Y D, Gao D X, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China[J]. Soil Biology and Biochemistry, 2019, 134: 1-14. doi: 10.1016/j.soilbio.2019.03.017
[31] Peng X Q, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China[J]. Soil Biology and Biochemistry, 2016, 98: 74-84. doi: 10.1016/j.soilbio.2016.04.008
[32] Zhang W, Gao D X, Chen X, et al. Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China[J]. Geoderma, 2018, 325: 152-161. doi: 10.1016/j.geoderma.2018.03.027
[33] Dong W Y, Zhang X Y, Liu X Y, et al. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China[J]. Biogeosciences, 2015, 12(18): 5537-5546. doi: 10.5194/bg-12-5537-2015